1、直角三角形全等的判定
2、角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。
3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4、定理1关于某条直线对称的两个图形是全等形
5、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线
6、多边形内角和定理n边形的内角的和等于(n—2)×180°
7、*行四边形性质定理2*行四边形的对边相等
8、*行四边形判定定理2两组对边分别相等的四边形是*行四边形
9、*行四边形判定定理4一组对边*行相等的四边形是*行四边形
10、矩形性质定理1矩形的四个角都是直角
11、菱形性质定理1菱形的四条边都相等
12、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
13、线段垂直*分线上的点与这条线段的两个端点的距离相等
14、等腰三角形的性质
15、运用公式法
16、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。
17、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
18、比较法
19、公式法
20、定理1 在角的*分线上的点到这个角的两边的距离相等
21、推论 2 有一个角等于60°的等腰三角形是等边三角形
22、由坐标找点:例找点B( 3,-2 ) ?
23、关于坐标轴、原点的对称点:
24、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。
26、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。
27、因式分解
28、轴对称图形上对应线段相等、对应角相等。
29、点(x,y)关于x轴对称的点的坐标为(x,—y)
30、等边三角形的三个内角相等,等于60°,
31、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。
32、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
33、同底数幂的除法
34、因式分解的思路与解题步骤:
35、分组分解法:
36、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
37、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
38、类比分数的通分得到分式的通分:
39、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
40、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
41、在*面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
42、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
43、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。
44、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
45、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
46、刻画数据的集中趋势(*均水*)的量:*均数、众数、中位数
47、个体:组成总体的每一个考察对象称为个体、
48、对角线相等的*行四边形是矩形。
49、对角线互相垂直的*行四边形是菱形。
50、邻边相等的矩形是正方形。
——五年级上册数学知识点 60句菁华
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、能正确进行乘号的简写,略写;小数乘法的计算法则;
6、构建初步的空间想象力;
7、多边形面积的计算。
8、计算小数加法先把小数点对齐,再把相同数位上的数相加
9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
10、用计算器来验算
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、构建空间想象力:
13、①含有未知数的等式称为方程。
14、*行四边形面积=底×高字母公式:s=ah
15、分割法;
16、画垂线时用实线画。
17、*行四边形面积=底×高(s*=ah)
18、三角形高=面积×2÷底 h = 2 S ÷ a
19、运算定律和性质:
20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
21、(关于“大约)应用题:
22、圆柱的侧面积=底面圆的周长×高:S=ch。
23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。
24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
25、相邻两个质量单位进率是1000。
26、圆的面积=圆周率×半径×半径:s=πr2。
27、*行四边形的面积=底×高S=ah
28、正方体的表面积=棱长×棱长×6公式:S=6a2
29、镜子内外的左右方向是相反的。
30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
32、5×1.8 就是求 1.5 的 1.8 倍是多少。
33、所有的方程都是等式,但等式不一定都是方程。
34、方程的检验过程:方程左边=……
35、身份证码:18位
36、长方形和正方形是特殊的*行四边形。
37、解方程。
38、求一个数的近似数:
39、分母:表示*均分的份数。分子:表示取出的份数。
40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。
42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
43、含有未知数的等式是方程。
44、求方程中未知数的过程,叫做解方程。
45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
46、1992所有的质因数的和是( 88 )。
47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。
49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。
50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
55、有些事件的发生是确定的,有些是不确定的。 可能
56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)
57、正方形里最大的圆。两者联系:边长=直径
58、长方形里最大的圆。两者联系:宽=直径
59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——五年级上册数学知识点 50句菁华
1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
4、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、把因数的位置交换相乘
7、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
8、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
9、用字母表示计算公式。
10、综合计算法
11、*行四边形面积=底×高 S = a h
12、*行四边形底=面积÷高 a = S ÷ h
13、梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
14、1*方米=100*方分米=10000*方厘米
15、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
16、求近似数的方法一般有三种:(P10)
17、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、长方形的周长=(长+宽)×2:C=(a+b)×2。
20、长方形的面积=长×宽:S=ab。
21、三角形的面积=底×高÷2 S=ah÷2
22、长方体的体积=长×宽×高公式:V = abh
23、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
24、5×1.8 就是求 1.5 的 1.8 倍是多少。
25、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
26、方程的检验过程:方程左边=……
27、等底等高的*行四边形面积相等;
28、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
29、正方形的特点:有4个直角,4条边相等。
30、*行四边形的特点:
31、可以表示起点
32、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
33、读数和写数(读数时写汉字写数时写*数字)
34、公式
35、真分数:分子小于分母的分数叫做真分数。真分数小于1。
36、互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
37、自然数按是否是2的倍数来分:奇数偶数
38、自然数按因数的个数来分:质数、合数、1.
39、表示相等关系的式子叫做等式。
40、含有未知数的等式是方程。
41、列方程解应用题的思路:
42、1992所有的质因数的和是( 88 )。
43、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。
44、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。
45、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。
46、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
47、长方形里最大的圆。两者联系:宽=直径
48、车轮滚动一周前进的路程就是车轮的周长。
49、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
50、常用的*方数:112=121 122=144 132=169 142=196 152=225
——六年级上册数学知识点 50句菁华
1、整数加法计算法则:
2、小数乘法法则:
3、小数乘法意义:
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知A比B多(或少)几分之几,求A的解题方法
6、物*置的相对性
7、理解比例的意义和基本性质,会解比例。
8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
9、在*面图上标出物*置的方法:
10、绘制路线图的方法:
11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径
16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
17、求一个数比另一个数多(或少)几分之几(或百分之几)?
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、根据比的基本性质,可以把比化成最简单的整数比。
20、被减数-减数=差被减数-差=减数差+减数=被减数
21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
24、假分数与带分数的互化:
25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、已知一个数的百分之几是多少,求这个数?
28、浓度问题
29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
34、被除数 相当于分子,除数相当于分母。
35、减法的性质:
36、分数除法应用题:
37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
39、根据比的基本性质,可以把比化成最简单的整数比。
40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
42、常用统计图的优点:
43、使学生能在方格纸上用数对确定位置;
44、使学生理解倒数的意义,掌握求倒数的方法;
45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
50、“数与形相结合”的思想
——数学知识点 100句菁华
1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、长方形和正方形是特殊的*行四边形。
5、①相同分母的分数相加、减:分母不变,只和分子相加、减。
6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
7、有理数加法的运算律:
8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
10、有理数中仍然有:乘积是1的两个数互为倒数。
11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
12、圆方程
13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
14、从个位减起;
15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
16、哪一位上乘得的积满几十就向前进几。
17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
20、解方程;
21、除法各部分之间的关系:
22、乘法各部分的关系:
23、什么是名数?
24、什么是复名数?
25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
26、环形面积=大圆–小圆=πR2-πr2
27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。
30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。
31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。
34、学生在动手操作中,可以画出并能计算出图形的周长。
35、概念和分类
36、基本规律
37、鸡兔同笼的解题思路
38、两直线*行,内错角相等
39、定理 三角形两边的和大于第三边
40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合
41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
42、直角三角形斜边上的中线等于斜边上的一半
43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
44、*行四边形性质定理1 *行四边形的对角相等
45、*行四边形性质定理2 *行四边形的对边相等
46、推论 夹在两条*行线间的*行线段相等
47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形
48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比
52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
53、集合的中元素的三个特性:
54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
55、语言描述法:例:{不是直角三角形的三角形}
56、有余数的除法: 被除数=商×除数+余数
57、竖式:
58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。
59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。
61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.
62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
67、用字母表示数的写法
68、列方程解答应用题的步骤
69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41
70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,
71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
73、怎样找准分数应用题中单位“1”
74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)
75、奇数、偶数、质数、合数(正整数自然数)
76、忽视零向量致误
77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
78、单项式与多项式
79、指数
80、1柱、锥、台、球的结构特征
81、2空间几何体的三视图和直观图
82、2.直线、*面*行的判定及其性质
83、3直线、*面垂直的判定及其性质
84、3.1直线与*面垂直的判定
85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形
86、有理数和无理数统称实数.
87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.
88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
89、一个数与0相加,仍得这个数。
90、方程与方程组
91、一元二次方程的二次函数的关系
92、同角或等角的余角相等——余角=90-角度。
93、逆定理
94、矩形性质定理1
95、等腰梯形判定定理
96、判定定理3
97、性质定理3
98、圆的外部可以看作是圆心的距离大于半径的点的集合
99、切割线定理
100、扇形面积公式:S扇形=n兀R^2/360=LR/2
——高等数学知识点总结 50句菁华
1、了解函数的奇偶性、单调性、周期性、和有界性。
2、理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
3、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
4、熟练运用微分中值定理证明简单命题。
5、了解函数图形的作图步骤。了解方程求近似解的两种方法:二分法、切线法。
6、会求有理函数、三角函数、有理式和简单无理函数的不定积分
7、掌握不定积分的换元积分法。
8、理解定积分的概念,掌握定积分的性质及定积分中值定理。
9、掌握反常积分的运算。
10、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
11、掌握一阶线性微分方程的解法,会解伯努利方程.
12、掌握向量的线性运算,掌握单位向量、方向角与方向余弦,掌握向量的坐标表达式掌握用坐标表达式进行向量运算方法。
13、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。
14、理解曲面方程的概念,了解二次曲面方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线*行于坐标轴的柱面方程。
15、了解空间曲线的概念,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标*面上的投影,并会求其方程。
16、列方程解应用题的常用公式:
17、代数式
18、一元二次方程的解法
19、韦达定理
20、一元二次方程根的情况
21、点,线,面
22、直线外一点与直线上各点连接的所有线段中,垂线段最短
23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
24、同旁内角互补,两直线*行
25、两直线*行,同位角相等
26、推论
27、三角形内角和定理:
28、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
29、定理1
30、等腰三角形的性质定理
31、逆定理
32、多边形内角和定理
33、矩形性质定理2
34、菱形判定定理2
35、等腰梯形的两条对角线相等
36、*行线等分线段定理
37、同圆或等圆的半径相等
38、到已知角的两边距离相等的点的轨迹,是这个角的*分线
39、弦切角定理
40、正n边形的面积Sn=pn*rn/2
41、扇形面积公式:S扇形=n兀R^2/360=LR/2
42、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
43、绝对值:
44、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
45、有理数乘法的运算律:
46、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
47、混合运算法则:先乘方,后乘除,最后加减。
48、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
49、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
50、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0
——数学五年级知识点 40句菁华
1、分数:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
2、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
3、互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和9。
4、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。
5、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。
6、会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;
7、205≈2.2 (保留一位小数)
8、205≈2.21 (保留两位小数)
9、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体*均分成若干份,这样的一份或几份都可以用分数来表示。
10、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
11、分数和小数的互化
12、3=3/10 0.03=3/100 0.003=3/1000
13、方程的意义
14、列方程解应用题的一般步骤
15、一本书100页,*均每页有a行,每行有b个字,那么,这本书一共有( )个字。
16、根据运算定律写出:
17、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )
18、一块长方形试验田有4.2公顷,它的长是420米,它的宽是( )米。
19、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。( )
20、某校六年级有两个班,上学期级数学*均成绩是85分。已知六(1)班40人,*均成绩为87.1分;六(2)班有42人,*均成绩是多少分?
21、15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?
22、乘法交换律:axb=bxa
23、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。
24、计量很短的时间,常用秒。秒是比分更小的时间单位。
25、动手操作,思维拓展
26、计算小数乘法末尾对齐,按整数乘法法则进行计算。
27、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
28、长方形的周长=(长+宽)×2 C=(a+b)×2
29、长方形的面积=长×宽S=ab
30、正方形的面积=边长×边长S=a.a= a
31、直径=半径×2 d=2r半径=直径÷2 r= d÷2
32、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
33、长方体的体积=长×宽×高公式:V = abh
34、对*移和旋转现象的初步认识:
35、分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
36、分数化成小数的方法:
37、异分母分数要先通分才能够相加、减。
38、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000 。
39、梯形面积公式推导:
40、被减数-减数=差被减数-差=减数差+减数=被减数
——中考七年级数学知识点 30句菁华
1、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
2、把多项式中的同类项合并成一项,叫做合并同类项。
3、具有相反意义的量
4、有理数的概念
5、在正数前面加上负号“-”的数叫做负数(negativenumber).
6、在直线上任取一个点表示数0,这个点叫做原点(origin).
7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
9、正数大于0,0大于负数,正数大于负数.
10、有理数减法法则
11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
12、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
13、根据有理数的乘法法则可以得出
14、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.
15、射线的特征:“向一方无限延伸,它有一个端点。”
16、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。
17、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
18、垂直公理:过一点有且只有一条直线与已知直线垂直。
19、垂线段最短。
20、*行线的判定:
21、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
22、*行线的性质:
23、命题:判断一件事情的语句叫命题。
24、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。
25、实数的分类正有理数有理数零有限小数和无限循环小数
26、相反数
27、倒数
28、算术*方根
29、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。