七年级上册数学知识点 30句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学

1、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

2、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.

4、大于0的数叫做正数(positive number)。

5、整数和分数统称为有理数(rational number)。

6、有理数减法法则

7、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

9、有理数除法法则

10、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

11、把多项式中的同类项合并成一项,叫做合并同类项。

12、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

13、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

14、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。

15、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间

16、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

17、几何体简称为体(solid)。

18、角∠(angle)也是一种基本的几何图形。

19、几何图形的投影问题

20、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;

21、线段、射线、直线的表示方法

22、正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

23、在有理数的加法中,

24、运算顺序:先算乘方,再算乘除,最后算加减。如果是同级运算,则按从左到右的运算顺序计算。如果有括号,先算小括号,再算中括号,最后算大括号。

25、不含字母的项叫做常数项。

26、单项式和多项式统称为整式。

27、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。

28、方程是等式,等式不一定是方程。

29、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

30、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。


七年级上册数学知识点 30句菁华扩展阅读


七年级上册数学知识点 30句菁华(扩展1)

——七年级下册数学知识点 40句菁华

1、都是数字与字母的乘积的代数式叫做单项式。

2、单独一个数或一个字母也是单项式。

3、只含有字母因式的单项式的系数是1或―1。

4、单项式的系数包括它前面的符号。

5、单项式的系数是1或―1时,通常省略数字“1”。

6、多项式中的每一个单项式叫做多项式的项。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

8、单项式和多项式统称为整式。

9、单项式或多项式都是整式。

10、几个整式相加减的一般步骤:

11、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

12、底数相同的幂叫做同底数幂。

13、此法则也可以逆用,即:am+n = am﹒an。

14、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

15、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。

16、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

17、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

18、系数相乘时,注意符号。

19、单项式乘以单项式的结果仍是单项式。

20、积是一个多项式,其项数与多项式的项数相同。

21、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

22、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的*方之差。

23、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

24、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

25、互为余角和互为补角和

26、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

27、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

28、(1)等腰三角形:对称轴,性质

29、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线

30、事件的分类:,会求各种事件的概率

31、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

32、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。

33、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。

34、等腰三角形的两个底角相等(简称“等边对等角”)。

35、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

36、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

37、*行线的性质:

38、*面上不相重合的两条直线之间的位置关系为_______或________

39、实数与数轴上点的关系:

40、算术*方根


七年级上册数学知识点 30句菁华(扩展2)

——七年级下册数学知识点总结 40句菁华

1、按性质符号分类:

2、对于数轴上的任意两个点,靠右边的点所表示的数较大。

3、乘方与开方

4、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

5、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。

6、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。

7、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

10、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。

11、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

12、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

13、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

14、*移:

15、大于0的数叫做正数(positive number)。

16、在正数前面加上负号“-”的数叫做负数(negative number)。

17、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

18、正数大于0,0大于负数,正数大于负数。

19、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

20、有理数减法法则

21、有理数乘法法则

22、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

24、根据有理数的乘法法则可以得出

25、做有理数混合运算时,应注意以下运算顺序:

26、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

27、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

28、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

29、单项式中的数字因数叫做这个单项式的系数(coefficient)。

30、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。

31、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

32、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。

33、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。

34、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

35、等角的补角相等,等角的余角相等。

36、相反数的几何意义

37、单项式的系数:是指单项式中的数字因数;

38、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。

39、单项式和多项式统称为整式。

40、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。


七年级上册数学知识点 30句菁华(扩展3)

——七年级下册数学知识点总结归纳 40句菁华

1、相反数

2、*方根

3、乘法

4、单项式的数字因数叫做单项式的系数。

5、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

6、几个单项式的和叫做多项式。

7、多项式中不含字母的项叫做常数项。

8、整式不一定是单项式。

9、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

10、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

11、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

12、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

13、积是一个多项式,其项数与多项式的项数相同。

14、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

15、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

16、*行线的性质:两直线*行。(线的*行

17、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

18、会判轴对称图形,会根据画对称图形,(或在方格中画)

19、常见的轴对称图形有:

20、垂直三要素:垂直关系,垂直记号,垂足。

21、垂线段最短。

22、命题:判断一件事情的语句叫命题。

23、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

24、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

25、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

26、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)

27、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

28、钝角三角形有两条高在外部。

29、三个角对应相等的两个三角形不一定全等。

30、两边及一角对应相等的两个三角形不一定全等。

31、一条斜边和一直角边对应相等的两个三角形全等。

32、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

33、全等图形

34、两个能够重合的图形称为全等图形。

35、全等三角形

36、若Y随X的变化而变化,则X是自变量Y是因变量。

37、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间

38、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。

39、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;

40、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;


七年级上册数学知识点 30句菁华(扩展4)

——中考数学知识点 60句菁华

1、直角坐标系中,点A(1,1)在第一象限。

2、函数=4x+1是正比例函数。

3、cs30°=。

4、同圆或等圆的半径相等。

5、长度相等的两条弧是等弧。

6、经过圆心*分弦的直径垂直于弦。

7、直线与圆有唯一公共点时,叫做直线与圆相切。

8、数的分类及概念数系表:

9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

10、整式和分式

11、指数

12、分式的加、减、乘、除、乘方、开方法则

13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

14、总体:考察对象的全体。

15、个体:总体中每一个考察对象。

16、众数:一组数据中,出现次数最多的数据。

17、角(*角、周角、直角、锐角、钝角)

18、互为余角、互为补角及表示方法

19、公理、定理

20、定义(包括内、外角)

21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

22、一般性质(角)

23、定义及一般形式:

24、根的判别式:

25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

27、一元一次不等式组:

28、应用举例(略)

29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

30、表示方法:⑴解析法;⑵列表法;⑶图象法。

31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

32、特殊角的三角函数值:

33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

34、"等对等"定理及其推论

35、五种位置关系及判定与性质:(重点:相切)

36、圆的内接、外切多边形(三角形、四边形)

37、*分已知弧

38、科学的听课方式

39、求与y轴*行线段的中点:|y1—y2|/2

40、抛物线是轴对称图形。对称轴为直线

41、一次项系数b和二次项系数a共同决定对称轴的位置。

42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。

43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

46、5×1.8 就是求 1.5 的 1.8 倍是多少。

47、求近似数的方法一般有三种:(P10)

48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

49、解方程原理:天**衡。

50、所有的方程都是等式,但等式不一定都是方程。

51、*行四边形面积公式推导:剪拼、*移

52、梯形面积公式推导:旋转

53、身份证码: 18 位

54、重心和三角形3个顶点组成的3个三角形面积相等。

55、直角坐标系中,点A(3,0)在y轴上。

56、当x=2时,函数y=的值为1.

57、当x=3时,函数y=的值为1.

58、函数y=-8x是一次函数。

59、tan45= 1.

60、直角三角形的三条高交点在一个顶点上。


七年级上册数学知识点 30句菁华(扩展5)

——七年级生物上册知识点 50句菁华

1、植物是生态系统中的,动物是生态系统中的的分解者。

2、生态系统的概念:在一定区域内,与形成的统一的整体物链积累。

3、放大倍数=,如果目镜上标有10X,物镜上标有40X,则显微镜观察到的物体被放大的倍数是400倍。

4、动物和人的基本结构层次(小到大):→→→

5、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。Fe、Mn、B、Zn、Cu、Mo、Cl属于微量元素,巧记:铁门碰醒铜母(驴)。

6、食物链:植物→虫→青蛙→蛇→鹰

7、森林生态系统:最稳定的生态系统,有“绿色水库”“地球之肺”之称。

8、放大倍数=物镜倍数×三、观察动植物细胞:实验过程1、切片、涂片、装片的区别P42

9、植物细胞的基本结构细胞壁:支持、保护

10、枝条是由芽发育成的;花由花芽发育而来

11、生物能进行呼吸

12、显微镜成像的规律:上下颠倒,左右相反(字母“p”在显微镜下看到的应是“d”。

13、线粒体:(呼吸作用的主要场所,把有机物的化学能释放出来,是能量转换器)。

14、如果将生态系统中的每一个环节中的所有生物分别称重,在一般情况下数量做大的应该是生产者。

15、食物链书写规则:

16、作出假设:光对鼠妇的生活有影响。鼠妇适合生活在阴暗的环境中。

17、我们吃的大米主要是胚乳,大米不能萌发时因为无胚。

18、生物体由小长大,是与细胞的生长和分裂分不开的。除癌细胞外,细胞都不能无限制生长,长到一定的体积就要进行分裂,细胞分裂就是一个细胞分成两个细胞的过程。

19、细胞核分裂时,染色体的变化最明显。分裂结束,两个新细胞的染色体形态和数目相同,新细胞与原细胞的染色体形态和数目也相同;遗传物质也是一样的。

20、动物体的结构层次:四大组织、八大系统

21、切片、涂片、装片的区别P42

22、基因是DNA上的一个具有特定遗传信息的片断

23、动物和人的基本结构层次(小到大):细胞→组织→器官→系统→动物体和人体

24、蕨类植物的经济意义在于:①有些可食用;②有些可供药;③有些可供观赏;④有些可作为优良的绿肥和饲料;⑤古代的蕨类植物的遗体经过漫长的年代,变成了煤。

25、苔藓植物的根是假根,不能吸收水分和无机盐,而苔藓植物的茎和叶中没有输导组织,不能运输水分。所以苔藓植物不能脱离开水的环境。

26、能量在2个营养级上传递效率在10%—20%

27、生态系统的结构:生态系统的成分+食物链食物网

28、芽中有分生组织,种子萌发时,胚芽发育成幼苗的茎和叶。幼苗形成后,茎、叶、花都是由芽发育而成的。枝条由叶芽发育而成,花由花芽发育而成。

29、植株的生长需要多种无机盐,其中需要量最多的是氮、磷、钾。

30、合理施肥,多用农家肥。

31、蔗糖不能出入半透膜

32、尿素既能做氮源也能做碳源

33、青霉菌产生青霉素青霉素能杀死细菌、放线菌杀不死真菌。

34、一切感觉产生于大脑皮层

35、皮肤烧伤后第一道防线受损

36、生产赖氨酸时加入少量的高丝氨酸是为了产生一些苏氨酸和甲硫氨酸使黄色短杆菌正常生活

37、植物的个体发育包括种子的形成和萌发(胚胎发育),植物的生长和发育(胚后发育)

38、生物体内的大量元素:CHONPSKCaMg

39、湿地是由于其特殊的水文及地理特征且具有防洪抗旱和净化水质等特点

40、第一道防线:皮肤、粘膜、汗液等

41、限制性内切酶大多数在微生物中

42、植物培养时加入:蔗糖生长素有机添加物

43、细胞壁决定细菌的致病性

44、适应具有相对性的原因:遗传物质稳定性与环境条件变化相互作用的结果。

45、动物和人的基本结构层次(小到大):细胞→组织→器官→系统→动物体和人体

46、绿色植物的生活需要水

47、蒸腾作用的意义:

48、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满足了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物提供了基本的食物来源、氧气来源、能量来源。

49、绿色植物通过光合作用,不断消耗大气中的二氧化碳,产生氧气,维持了生物圈中的碳氧*衡。

50、我国森林覆盖率16.55%,


七年级上册数学知识点 30句菁华(扩展6)

——中考数学知识点 50句菁华

1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

2、反比例函数的图象在第一、三象限

3、cs30°=。

4、同弧所对的圆周角等于圆心角的一半。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

7、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

8、单项式与多项式

9、指数

10、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

11、乘法法则:⑴单×单;⑵单×多;⑶多×多。

12、乘法公式:(正、逆用)

13、线段的中点及表示

14、互为余角、互为补角及表示方法

15、分类:

16、元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法

17、定义:a>b、a

18、一元一次不等式的解、解一元一次不等式

19、对应线段…;2.对应周长…;3.对应面积…。

20、添加辅助*行线是获得成比例线段和相似三角形的重要途径。

21、画函数图象:⑴列表;⑵描点;⑶连线。

22、特殊角的三角函数值:

23、依据:①边的关系:

24、俯、仰角:2.方位角、象限角:3.坡度:

25、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

26、圆的定义(两种)

27、圆面积公式

28、弧长公式

29、圆柱、圆锥的侧面展开图及相关计算

30、作三角形的外接圆、内切圆

31、作半径

32、科学的听课方式

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

34、规律方法总结:

35、k,b与函数图像所在象限:

36、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。

37、用待定系数法求二次函数的解析式

38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

39、见直径往往作直径上的'圆周角

40、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。

41、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

42、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

43、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

44、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

45、梯形面积公式推导:旋转

46、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)

47、重心到三角形3个顶点距离的*方和最小。

48、直角坐标系中,点A(3,0)在y轴上。

49、反比例函数的图象在第一、三象限。

50、cos60+ sin30= 1.


七年级上册数学知识点 30句菁华(扩展7)

——数学七年级上册知识点 50句菁华

1、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.

2、几何图形

3、生活中的立体图形

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

6、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

7、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

8、去括号法则

9、角的度量

10、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

11、方程的解

12、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.

13、解一元一次方程的一般步骤:

14、扇形统计图

15、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p

16、正数:大于0的数。

17、负数:小于0的数。

18、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

19、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

20、乘法分配律:a(b+c)=ab+ac

21、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

22、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

23、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

24、同号两数相加,取相同的符号,并把绝对值相加。

25、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

26、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

27、在直线上任取一个点表示数0,这个点叫做原点(origin).

28、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

29、有理数的加法中,两个数相加,交换交换加数的位置,和不变.

30、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

31、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.

32、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

33、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

34、有理数除法法则

35、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;

36、所有的有理数都可以用分数表示,π不是有理数。

37、只有符号不同的两个数叫做互为相反数。(0的相反数是0)

38、在有理数的加法中,

39、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。

40、次数:单项式中所有的字母的指数和

41、几个单项式的和叫做多项式。

42、列方程是解决问题的重要方法,利用方程可以解出未知数。

43、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。

44、先看笔记后做作业。

45、利用数轴表示两数大小

46、可用字母表示为

47、有理数的乘法法则

48、倒数

49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。

50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。


七年级上册数学知识点 30句菁华(扩展8)

——三年级上册数学的知识点归纳 40句菁华

1、计算一段时间,可以用结束的时刻减去开始的时刻。

2、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。

3、常用长度单位:米、分米、厘米、毫米、千米。

4、质量单位 :吨、千克、克,每相邻两个单位之间的进率都是1000 。

5、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。

6、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。

7、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。

8、在一个长方形中剪出一个最大的正方形,长方形的宽就是这个正方形的边长。

9、A项 B项

10、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

11、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

12、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

13、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

14、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

15、在计算长度时,只有相同的长度单位才能相加减。

16、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

17、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

18、读数和写数(读数时写汉字写数时写*数字)

19、数的大小比较:

20、被减数是三位数的连续退位减法的运算步骤:

21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

22、正方形的特点:有4个直角,4条边相等。

23、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)

24、减法的验算方法:

25、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

26、分母越大,分数单位越小,的分数单位是1/2

27、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

28、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

29、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

30、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

31、分数大小比较的应用题:工作效率大的快,工作时间小的快。

32、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

33、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

34、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

35、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

36、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

37、笔算除法顺序:确定商的位数,试商,检查,验算。

38、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

39、*年:2月有28天的月份是*年,*年有365天。

40、闰年:2月有29天的月份是*年,*年有365天。

相关词条