1、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。
2、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。
3、由曲线围成的图形(圆)不能够密铺。
4、无限小数:小数部分的位数是无限的小数,叫做无限小数。
5、*行四边形面积公式推导:剪拼、*移
6、梯形面积公式推导:旋转
7、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
8、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
9、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
10、积与因数的关系:
11、一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)几倍。
12、小数除以整数:
13、小数除以小数:
14、5的倍数特征:个位上是0、5的数都是5的倍数
15、在*行四边形里画一个最大的三角形,这个三角形的面积等于这个*行四边形面积的一半。
16、三角形和*行四边形面积相等,高相等,则三角形的底是*行四边形的2倍,*行四边形的底是三角形的一半。
17、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
18、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的`自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
19、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
20、5□中最大填()时这个数能被3整除,这个数的约数有()
21、已知a=2×2×3×5b=2×5×7,a和b公有的质因数有(),它们的最大公约数是()
22、一个非0自然数不是质数,就是合数。()
23、大于2的偶数都是合数。()
24、8÷[14-(9.85+1.07)](2.44-1.8)÷0.4×20
25、一段长方体钢材,长1.6米,横截面是边长4厘米的正方形。每立方厘米刚重7.8克,这块方钢重多少?
26、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深12厘米。把一块石头浸入水中后,水面升到16厘米,求石块的体积。
27、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
28、在实际应用中,小数除法所
29、3232的循环节是32.
30、事件发生的机会(或概率)有大小。
——五年级上册数学知识点 60句菁华
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、能正确进行乘号的简写,略写;小数乘法的计算法则;
6、构建初步的空间想象力;
7、多边形面积的计算。
8、计算小数加法先把小数点对齐,再把相同数位上的数相加
9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
10、用计算器来验算
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、构建空间想象力:
13、①含有未知数的等式称为方程。
14、*行四边形面积=底×高字母公式:s=ah
15、分割法;
16、画垂线时用实线画。
17、*行四边形面积=底×高(s*=ah)
18、三角形高=面积×2÷底 h = 2 S ÷ a
19、运算定律和性质:
20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
21、(关于“大约)应用题:
22、圆柱的侧面积=底面圆的周长×高:S=ch。
23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。
24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
25、相邻两个质量单位进率是1000。
26、圆的面积=圆周率×半径×半径:s=πr2。
27、*行四边形的面积=底×高S=ah
28、正方体的表面积=棱长×棱长×6公式:S=6a2
29、镜子内外的左右方向是相反的。
30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
32、5×1.8 就是求 1.5 的 1.8 倍是多少。
33、所有的方程都是等式,但等式不一定都是方程。
34、方程的检验过程:方程左边=……
35、身份证码:18位
36、长方形和正方形是特殊的*行四边形。
37、解方程。
38、求一个数的近似数:
39、分母:表示*均分的份数。分子:表示取出的份数。
40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。
42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
43、含有未知数的等式是方程。
44、求方程中未知数的过程,叫做解方程。
45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
46、1992所有的质因数的和是( 88 )。
47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。
49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。
50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
55、有些事件的发生是确定的,有些是不确定的。 可能
56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)
57、正方形里最大的圆。两者联系:边长=直径
58、长方形里最大的圆。两者联系:宽=直径
59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——五年级上册数学知识点 50句菁华
1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
4、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、把因数的位置交换相乘
7、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
8、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
9、用字母表示计算公式。
10、综合计算法
11、*行四边形面积=底×高 S = a h
12、*行四边形底=面积÷高 a = S ÷ h
13、梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
14、1*方米=100*方分米=10000*方厘米
15、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
16、求近似数的方法一般有三种:(P10)
17、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、长方形的周长=(长+宽)×2:C=(a+b)×2。
20、长方形的面积=长×宽:S=ab。
21、三角形的面积=底×高÷2 S=ah÷2
22、长方体的体积=长×宽×高公式:V = abh
23、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
24、5×1.8 就是求 1.5 的 1.8 倍是多少。
25、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
26、方程的检验过程:方程左边=……
27、等底等高的*行四边形面积相等;
28、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
29、正方形的特点:有4个直角,4条边相等。
30、*行四边形的特点:
31、可以表示起点
32、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
33、读数和写数(读数时写汉字写数时写*数字)
34、公式
35、真分数:分子小于分母的分数叫做真分数。真分数小于1。
36、互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
37、自然数按是否是2的倍数来分:奇数偶数
38、自然数按因数的个数来分:质数、合数、1.
39、表示相等关系的式子叫做等式。
40、含有未知数的等式是方程。
41、列方程解应用题的思路:
42、1992所有的质因数的和是( 88 )。
43、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。
44、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。
45、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。
46、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
47、长方形里最大的圆。两者联系:宽=直径
48、车轮滚动一周前进的路程就是车轮的周长。
49、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
50、常用的*方数:112=121 122=144 132=169 142=196 152=225
——中考七年级数学知识点 30句菁华
1、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
2、把多项式中的同类项合并成一项,叫做合并同类项。
3、具有相反意义的量
4、有理数的概念
5、在正数前面加上负号“-”的数叫做负数(negativenumber).
6、在直线上任取一个点表示数0,这个点叫做原点(origin).
7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
9、正数大于0,0大于负数,正数大于负数.
10、有理数减法法则
11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
12、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
13、根据有理数的乘法法则可以得出
14、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.
15、射线的特征:“向一方无限延伸,它有一个端点。”
16、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。
17、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
18、垂直公理:过一点有且只有一条直线与已知直线垂直。
19、垂线段最短。
20、*行线的判定:
21、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
22、*行线的性质:
23、命题:判断一件事情的语句叫命题。
24、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。
25、实数的分类正有理数有理数零有限小数和无限循环小数
26、相反数
27、倒数
28、算术*方根
29、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
——六年级上册数学知识点 60句菁华
1、同分母分数加减法计算方法:
2、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
3、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
4、分数乘整数的计算方法
5、分数乘分数的的计算方法
6、倒数的意义
7、已知单位“1”用乘法,求单位“1”用除法;
8、正比例和反比例:
9、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。
10、圆的周长是它的直径的π倍。(__)
11、圆内最长的线段是直径。(__)
12、3.14(__)π
13、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50
14、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:
15、已知圆的周长,求圆的面积S=π(C÷π÷2)?
16、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积
17、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
18、应纳税额。计算方法:营业额×税率
19、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率
20、两种数量比较
21、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
22、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数
23、相遇问题速度和=路程÷相遇时间
24、速度×时间=路程路程÷速度=时间路程÷时间=速度
25、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
26、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
27、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
28、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
29、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
30、小数与百分数互化的规则:
31、百分数与分数互化的规则:
32、常用的分数、小数及百分数的互化
33、求一个数的百分之几是多少
34、已知一个数的百分之几是多少,求这个数?
35、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。
36、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)
37、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
38、当符合什么条件时,错误才能变成正确?
39、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
40、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
41、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
42、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
43、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
44、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
45、比和除法、分数的联系:
46、根据比与除法、分数的关系,可以理解比的后项不能为0。
47、化简比:
48、用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
49、数不仅可以用来表示数量和顺序,还可以用来编码。
50、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
51、常用统计图的优点:
52、确定物*置的方法:
53、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
54、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
55、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
56、倒数:乘积是1的两个数叫做互为倒数。
57、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
58、日常应用:
59、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
60、“方程”思想
——六年级数学上册知识点 60句菁华
1、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
2、两个小数的比,向右移动小数点的位置。也是先化成整数比。
3、圆的周长:C =2πr =πd
4、用表格方式解决有局限性,数目必须小,例:
5、1 34
6、3 32
7、用代数方法解(一般规律)
8、分数乘法的意义:一个数×分数
9、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
10、整数加法计算法则:
11、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
12、分数除法应用题:
13、被除数÷除数=被除数×除数的倒数。
14、混合运算用梯等式计算,等号写在第一个数字的左下角。
15、错在哪里?
16、找单位“1”的方法
17、求倒数的方法
18、1的倒数是1,0没有倒数。
19、已知一个数的几分之几是多少,求这个数的问题
20、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
21、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
22、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
23、能用数对表示物体的位置,正确区分列和行的顺序;
24、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
25、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
26、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
27、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。
28、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。
29、这个月哪项出最多?支出了多少元?
30、购买衣物的支出比文化教育支出少百分之几?
31、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
32、常见的百分率的计算方法:
33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。
34、真分数和假分数:
35、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。
36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
37、、长方形
38、、长方体
39、三角形
40、梯形
41、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
42、已知单位“1”的量用乘法。
43、分数应用题基本数量关系(把分数看成比)
44、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
45、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
46、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
47、半圆周长=圆周长一半+直径= πr+d
48、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
49、小数、分数、百分数之间的互化
50、掌握求倒数的方法;
51、理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;
52、分数除法:分数除法是分数乘法的逆运算。
53、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
54、比和比例的意义:
55、“数与形相结合”的思想
56、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。
57、半个圆的周长就是圆周长的一半。(__)
58、当周长相等时,面积的是(__)
59、画一个直径为5厘米的圆,圆规两脚之间的距离是(__)
60、在边长为12米的正方形中剪直径为3厘米的圆,你最多能剪多少个?
——七年级上册数学知识点 30句菁华
1、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
2、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.
4、大于0的数叫做正数(positive number)。
5、整数和分数统称为有理数(rational number)。
6、有理数减法法则
7、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
9、有理数除法法则
10、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
11、把多项式中的同类项合并成一项,叫做合并同类项。
12、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
13、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
14、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
15、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间
16、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
17、几何体简称为体(solid)。
18、角∠(angle)也是一种基本的几何图形。
19、几何图形的投影问题
20、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;
21、线段、射线、直线的表示方法
22、正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
23、在有理数的加法中,
24、运算顺序:先算乘方,再算乘除,最后算加减。如果是同级运算,则按从左到右的运算顺序计算。如果有括号,先算小括号,再算中括号,最后算大括号。
25、不含字母的项叫做常数项。
26、单项式和多项式统称为整式。
27、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
28、方程是等式,等式不一定是方程。
29、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
30、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。