1、按性质符号分类:
2、对于数轴上的任意两个点,靠右边的点所表示的数较大。
3、乘方与开方
4、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。
5、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。
6、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
7、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。
10、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
11、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
12、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
13、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
14、*移:
15、大于0的数叫做正数(positive number)。
16、在正数前面加上负号“-”的数叫做负数(negative number)。
17、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
18、正数大于0,0大于负数,正数大于负数。
19、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
20、有理数减法法则
21、有理数乘法法则
22、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
24、根据有理数的乘法法则可以得出
25、做有理数混合运算时,应注意以下运算顺序:
26、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
27、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
28、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
29、单项式中的数字因数叫做这个单项式的系数(coefficient)。
30、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。
31、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
32、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。
33、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
34、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
35、等角的补角相等,等角的余角相等。
36、相反数的几何意义
37、单项式的系数:是指单项式中的数字因数;
38、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。
39、单项式和多项式统称为整式。
40、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
——七年级下册数学知识点 40句菁华
1、都是数字与字母的乘积的代数式叫做单项式。
2、单独一个数或一个字母也是单项式。
3、只含有字母因式的单项式的系数是1或―1。
4、单项式的系数包括它前面的符号。
5、单项式的系数是1或―1时,通常省略数字“1”。
6、多项式中的每一个单项式叫做多项式的项。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
8、单项式和多项式统称为整式。
9、单项式或多项式都是整式。
10、几个整式相加减的一般步骤:
11、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
12、底数相同的幂叫做同底数幂。
13、此法则也可以逆用,即:am+n = am﹒an。
14、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
15、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
16、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
17、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
18、系数相乘时,注意符号。
19、单项式乘以单项式的结果仍是单项式。
20、积是一个多项式,其项数与多项式的项数相同。
21、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
22、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的*方之差。
23、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
24、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
25、互为余角和互为补角和
26、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
27、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
28、(1)等腰三角形:对称轴,性质
29、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
30、事件的分类:,会求各种事件的概率
31、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
32、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。
33、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。
34、等腰三角形的两个底角相等(简称“等边对等角”)。
35、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
36、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
37、*行线的性质:
38、*面上不相重合的两条直线之间的位置关系为_______或________
39、实数与数轴上点的关系:
40、算术*方根
——七年级下册数学知识点总结归纳 40句菁华
1、相反数
2、*方根
3、乘法
4、单项式的数字因数叫做单项式的系数。
5、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
6、几个单项式的和叫做多项式。
7、多项式中不含字母的项叫做常数项。
8、整式不一定是单项式。
9、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
10、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
11、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
12、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
13、积是一个多项式,其项数与多项式的项数相同。
14、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
15、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
16、*行线的性质:两直线*行。(线的*行
17、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
18、会判轴对称图形,会根据画对称图形,(或在方格中画)
19、常见的轴对称图形有:
20、垂直三要素:垂直关系,垂直记号,垂足。
21、垂线段最短。
22、命题:判断一件事情的语句叫命题。
23、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
24、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
25、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
26、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)
27、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
28、钝角三角形有两条高在外部。
29、三个角对应相等的两个三角形不一定全等。
30、两边及一角对应相等的两个三角形不一定全等。
31、一条斜边和一直角边对应相等的两个三角形全等。
32、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
33、全等图形
34、两个能够重合的图形称为全等图形。
35、全等三角形
36、若Y随X的变化而变化,则X是自变量Y是因变量。
37、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间
38、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
39、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;
40、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
——七年级上册数学知识点 30句菁华
1、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
2、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.
4、大于0的数叫做正数(positive number)。
5、整数和分数统称为有理数(rational number)。
6、有理数减法法则
7、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
9、有理数除法法则
10、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
11、把多项式中的同类项合并成一项,叫做合并同类项。
12、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
13、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
14、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
15、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间
16、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
17、几何体简称为体(solid)。
18、角∠(angle)也是一种基本的几何图形。
19、几何图形的投影问题
20、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;
21、线段、射线、直线的表示方法
22、正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
23、在有理数的加法中,
24、运算顺序:先算乘方,再算乘除,最后算加减。如果是同级运算,则按从左到右的运算顺序计算。如果有括号,先算小括号,再算中括号,最后算大括号。
25、不含字母的项叫做常数项。
26、单项式和多项式统称为整式。
27、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
28、方程是等式,等式不一定是方程。
29、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
30、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
——七年级上册生物知识点 50句菁华
1、呼吸系统
2、食物链和食物网:
3、多种生态系统
4、由细胞构成(病毒除外)
5、范围:大气圈的底部(可飞翔的鸟类、昆虫、细菌等)、水圈的大部(距海*面150米内的水层)、岩石圈的表面(是一切陆生生物的“立足点”)→以海*面为标准,向上、向下各约10千米。生物种类最多的圈层是岩石圈;不借助任何工具,能在各个圈层生存的生物是细菌和真菌。
6、植物——生产者(能制造有机物,不仅养活了植物自身,还为动物的生存提供食物)
7、森林生态系统:最稳定的生态系统,有“绿色水库”之称。
8、物镜有高倍镜和低倍镜之分,区别如下:
9、生物体由小长大,是与细胞的生长和分裂分不开的。除癌细胞外,细胞都不能无限制生长,长到一定的体积就要进行分裂,细胞分裂就是一个细胞分成两个细胞的过程。
10、显微镜:
11、科学探究常需要进行对照实验,对照实验中除了实验变量不同外,其他因素都相同(即实验变量是的)。探究中要坚持实事求是的科学态度。
12、生物圈为生物的生存提供了基本条件:营养物质、阳光、空气和水,适宜的温度和一定的生存空间
13、植物细胞与动物细胞的不同点:植物细胞有细胞壁和液泡,动物细胞没有。
14、苔藓植物的根是假根,不能吸收水分和无机盐,而苔藓植物的茎和叶中没有输导组织,不能运输水分。所以苔藓植物不能脱离开水的环境。
15、藻类植物通过光合作用制造的有机物可以作为鱼的饵料,放出的氧气除供鱼类呼吸外,而且是大气中氧气的重要来源。
16、传粉和*(课本103)
17、我们吃的大米主要是胚乳,大米不能萌发时因为无胚。
18、命题的方向:本考点主要考查我们对影响生物生活的环境因素的认识.常见题型为举个实际生活中现象来让我们判定是哪一种生态因素对生物的生活造成的影响,并能进行简单地解析.
19、解题思路点拔:环境对生物的影响,经常了一些结合地理条件,如南、北方的温度明显不同或者山上山下温度差,导致某些生物在两地生长状况不同的试题.如“人间四月芳菲尽,山寺桃花始盛开”、“南橘北枳”等.另外要注意与生物对环境的适应知识进行区别记忆,有时还会出一些判断属于环境以生物的影响还是生物对环境的影响或适应的例子.如:芦山地震导致部分地区山体滑坡,许多动植物被掩埋死亡.判断这一事例是环境对生物的影响还是生物对环境的适应.这个属于典型的环境影响生物的例子.
20、生物圈为生物的生存提供了基本条件:
21、生物圈是一个统一的整体:注意DDT的例子课本26页。
22、是DNA上的一个具有特定遗传信息的片断
23、细胞的分裂的过程。
24、能量在2个营养级上传递效率在10%—20%
25、物质可以循环,能量不可以循环
26、生产者所固定的太阳能总量为流入该食物链的总能量
27、萌发时吸水多少看蛋白质多少
28、*卵——卵裂——囊胚——原肠胚
29、检测被标记的氨基酸,一般在有蛋白质的地方都能找到,但最先在核糖体处发现放射性
30、手语是一钟镅裕?揽渴泳踔惺嗪陀镅灾惺?/SPAN>
31、物理诱导:离心,震动,电刺激
32、原核细胞较真核细胞简单细胞内仅具有一种细胞器——核糖体,细胞内具有两种核酸——脱氧核酸和核糖核酸
33、青霉菌产生青霉素青霉素能杀死细菌、放线菌杀不死真菌。
34、将运载体导入受体细胞时运用CaCl2目的是增大细胞壁的通透性
35、分裂间期与蛋白质合成有关的细胞器有核糖体,线粒体,没有高尔基体和内质网。
36、自养需氧型生物的细胞结构中可能没有叶绿体可能没有线粒体(例如:蓝藻)
37、有丝分裂后期有4个染色体组
38、细胞融合细胞内有4个染色体组
39、生物体内的大量元素:CHONPSKCaMg
40、达尔文认为生命进化是由突变、淘汰、遗传造成的
41、基因分离定律:等位基因的分离
42、第一道防线:皮肤、粘膜、汗液等
43、限制性内切酶大多数在微生物中
44、质粒的复制在宿主细胞内(包括自身细胞内)
45、单克隆抗体是抗体(单一性强灵敏度高)
46、制备单克隆抗体需要两次筛选,筛选杂交瘤细胞,筛选产生单克隆抗体的细胞
47、中枢神经不包含神经中枢
48、生物圈:地球上所有的生物与其环境的总和就叫生物圈。生物圈是地球上最大的生态系统,也是最大的生命系统。
49、反射的类型
50、得出结论
——高中数学知识点总结 50句菁华
1、函数的极限:
2、在的导数。
3、函数在点处的导数的几何意义:
4、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
5、充要条件。
6、互为反函数的函数图象间的关系;
7、对数;
8、等差数列前n项和公式;
9、角的概念的推广;
10、两角和与差的正弦、余弦、正切;
11、函数的奇偶性;
12、函数的图象;
13、斜三角形解法举例。
14、向量;
15、实数与向量的积;
16、*面向量的坐标表示;
17、线段的定比分点;
18、不等式;
19、抛物线及其标准方程;
20、直线和*面*行的判定与性质;
21、直线和*面垂直的判定与性质;
22、三垂线定理及其逆定理;
23、异面直线的公垂线;
24、*面的法向量;
25、直线和*面所成的角;
26、向量在*面内的射影;
27、二面角及其*面角;
28、两个*面垂直的判定和性质;
29、多面体;
30、棱柱;
31、排列数公式;
32、函数图像(或方程曲线的对称性)
33、把答案盖住看例题
34、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。
35、利用导数研究多项式函数单调性的一般步骤
36、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
37、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
38、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
39、一条弧所对的圆周角等于它所对的圆心角的一半。
40、等比数列{an}中,若m+n=p+q,则
41、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
42、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
43、“包含”关系—子集注意:A?B有两种可能
44、构成函数的三要素:定义域、对应关系和值域
45、棱锥S—h—高V=Sh/3。
46、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
47、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。
48、区间的概念:设a,bR,且a
49、等比数列的有关公式
50、等比数列{an}的常用性质
——三年级上册数学的知识点归纳 40句菁华
1、计算一段时间,可以用结束的时刻减去开始的时刻。
2、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
3、常用长度单位:米、分米、厘米、毫米、千米。
4、质量单位 :吨、千克、克,每相邻两个单位之间的进率都是1000 。
5、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。
6、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。
7、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。
8、在一个长方形中剪出一个最大的正方形,长方形的宽就是这个正方形的边长。
9、A项 B项
10、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。
11、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。
12、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。
13、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)
14、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
15、在计算长度时,只有相同的长度单位才能相加减。
16、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
17、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
18、读数和写数(读数时写汉字写数时写*数字)
19、数的大小比较:
20、被减数是三位数的连续退位减法的运算步骤:
21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍
22、正方形的特点:有4个直角,4条边相等。
23、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)
24、减法的验算方法:
25、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
26、分母越大,分数单位越小,的分数单位是1/2
27、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。
28、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
29、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
30、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。
31、分数大小比较的应用题:工作效率大的快,工作时间小的快。
32、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。
33、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
34、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。
35、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。
36、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)
37、笔算除法顺序:确定商的位数,试商,检查,验算。
38、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。
39、*年:2月有28天的月份是*年,*年有365天。
40、闰年:2月有29天的月份是*年,*年有365天。
——九年级化学下册知识点总结 40句菁华
1、镁条燃烧:剧烈燃烧.耀眼白光.生成白烟
2、硫在空气中燃烧:剧烈燃烧、放热、有刺激味气体生成、空气中淡蓝色火焰(氧气中蓝紫色火焰)
3、甲烷燃烧:蓝色火焰、放热、生成使石灰水变浑浊气体和使无水CuSO4变蓝的液体(水)
4、取用药品注意节约:取用药品应严格按实验室规定的用量,如果没有说明用量,一般取最少量,即液体取1-2ml,固体只要盖满试管底部。
5、纯净物:只由一种物质组成的。如n2 o2 co2 p2o5等。
6、单质:由同种元素组成的纯净物。如n2 o2 s p等。
7、氧化物:由两种元素组成的纯净物中,其中一种元素的氧元素的化合物。如co2 so2等。
8、稀有气体的性质和用途:p25
9、药品:过氧化氢和二氧化锰或高锰酸钾或氯酸钾和二氧化锰
10、检验方法:用带火星的木条伸入集气瓶内,如果木条复燃,说明该瓶内的气体是氧气。
11、物理性质:无色无味的气体,难溶于水,密度比空气小,是相同条件下密度最小的气体。
12、化学性质——可燃性。
13、分子的特征:
14、解释在日常生活中,遇到的这些现象::
15、构成物质的微粒有:分子、原子、离子
16、水的净化(1)、加入絮凝剂吸附杂质(吸附沉淀)(2)、过滤(3)、消毒(加氯气或一氧化二氯)
17、我国的水资源情况及水资源污染:主要水体污染来源:工业污染、农业污染、生活污染。
18、相对原子质量只是一个比,不是原子的实际质量。它的单位是1,省略不写 。
19、元素符号的意义:a.表示一种元素.b.表是这种元素的一个原子
20、元素周期表
21、离子的形成:原子得或失电子后形成的带电原子
22、化合价的应用:依据化合物中各元素化合价的代数和为0。
23、元素符号前的数字:表示原子个数 2n
24、离子符号前面的数字:表示离子个数
25、炭黑 颜料
26、纯金属 铜 铁 铝 钛
27、金属的腐蚀和防护: 1.铁生锈的条件 与氧气和水蒸气等发生化学变化
28、防止铁生锈地方法:1.干燥,2.加一层保护膜3.改变其内部结构
29、最简单的有机物是CH4。
30、化学变化中最小的粒子是原子。
31、地壳中含量最多的元素是氧。
32、地壳中含量最多的金属元素是铝。
33、大理石与稀盐酸:固体逐渐溶解、有使澄清石灰水变浑浊的气体
34、铁丝放入CuSO4溶液中:铁丝表面覆盖一层红色物质,蓝色溶液变成浅绿色。
35、量筒的使用
36、酒精灯使用注意事项:
37、对人体吸入的空气和呼出的气体探究:p10—p12
38、物理变化:没有生成新物质的变化。如石蜡的熔化、水的蒸发。
39、可燃物
40、氧气(或空气)
——七年级上册生物的知识点 30句菁华
1、细胞的结构:细胞壁、细胞膜、细胞质、细胞器、细胞核
2、细胞器的结构和功能
3、显微镜的构造
4、英国物理学家罗伯特.虎克观察软木薄片,发现了细胞。
5、生物能进行呼吸
6、生物能对外界刺激做出反应
7、生物的适应性具有普遍性和相对性
8、植物——生产者(能制造有机物,不仅养活了植物自身,还为动物的生存提供食物)
9、食物链书写规则:
10、生态系统的类型:森林生态系统、草原生态系统、农田生态系统、海洋生态系统、城市生态系统等
11、森林生态系统:最稳定的生态系统,有“绿色水库”之称。
12、制作植物细胞临时装片的步骤:擦→滴(清水)→取→展→盖→染(稀碘液)→吸
13、遗传信息存在于细胞核中,DNA是遗传信息的载体,为双链的双螺旋结构;基因是DNA上带有遗传物质的片断,DNA和蛋白质组成了染色体。人的体细胞有23对染色体,水稻体内有12对。
14、生物体由小长大,是与细胞的生长和分裂分不开的。除癌细胞外,细胞都不能无限制生长,长到一定的'体积就要进行分裂,细胞分裂就是一个细胞分成两个细胞的过程。
15、生物圈的范围:
16、环境对生物的影响
17、是最大的生态系统。人类活动对环境的影响有许多是全球性的。
18、生物圈是一个统一的整体:注意DDT的例子课本26页。
19、写出显微镜各部分的结构及作用
20、放在显微镜下观察的生物标本,应该,光线能透过,才能观察清楚。因此必须加工制成玻片标本。
21、显微镜的操作:
22、观察人的口腔上皮细胞
23、生物的由小长大是由于:细胞的和细胞的。
24、能够共同完成一种或几种生理功能的多个器官按照一定的次序组成在一起构成八大系统:消化系统、呼吸系统、循环系统、泌尿系统、运动系统、神经系统、生殖系统、内分泌系统。
25、细胞中的物质
26、植物的根既能吸收土壤中的氮、磷、钾等营养物质,又能将其不需要的物质挡在外面,这主要是由于(D)
27、根尖的结构
28、小麦、水稻、竹子等植物属居间生长。
29、植株的生长需要多种无机盐,其中需要量最多的是氮、磷、钾。
30、合理施肥,多用农家肥。