1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
4、圆周率实验:
5、区分周长的一半和半圆的周长:
6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
7、取近似数的方法:
8、无限小数:小数部分的位数是无限的小数,叫做无限小数。
9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。
15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。
19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。
22、分数的分类
23、分子分母是互质数的分数叫做最简分数。
24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
25、圆的面积=圆周率×半径×半径
26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
29、分数除法:分数除法是分数乘法的逆运算。
30、你还能得到哪些信息?
31、文化教育支出了多少元?购买衣物支出了多少元?
32、因为零不能作除数,所以分数的分母不能为零。
33、被除数 相当于分子,除数相当于分母。
34、整数加法计算法则:
35、同分母分数加减法计算方法:
36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
37、用字母表示数的意义和作用
38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
39、、长方体
40、圆锥体
——六年级上册数学知识点 60句菁华
1、同分母分数加减法计算方法:
2、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
3、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
4、分数乘整数的计算方法
5、分数乘分数的的计算方法
6、倒数的意义
7、已知单位“1”用乘法,求单位“1”用除法;
8、正比例和反比例:
9、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。
10、圆的周长是它的直径的π倍。(__)
11、圆内最长的线段是直径。(__)
12、3.14(__)π
13、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50
14、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:
15、已知圆的周长,求圆的面积S=π(C÷π÷2)?
16、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积
17、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
18、应纳税额。计算方法:营业额×税率
19、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率
20、两种数量比较
21、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
22、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数
23、相遇问题速度和=路程÷相遇时间
24、速度×时间=路程路程÷速度=时间路程÷时间=速度
25、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
26、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
27、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
28、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
29、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
30、小数与百分数互化的规则:
31、百分数与分数互化的规则:
32、常用的分数、小数及百分数的互化
33、求一个数的百分之几是多少
34、已知一个数的百分之几是多少,求这个数?
35、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。
36、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)
37、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
38、当符合什么条件时,错误才能变成正确?
39、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
40、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
41、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
42、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
43、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
44、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
45、比和除法、分数的联系:
46、根据比与除法、分数的关系,可以理解比的后项不能为0。
47、化简比:
48、用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
49、数不仅可以用来表示数量和顺序,还可以用来编码。
50、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
51、常用统计图的优点:
52、确定物*置的方法:
53、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
54、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
55、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
56、倒数:乘积是1的两个数叫做互为倒数。
57、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
58、日常应用:
59、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
60、“方程”思想
——六年级上册数学知识点 50句菁华
1、整数加法计算法则:
2、小数乘法法则:
3、小数乘法意义:
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知A比B多(或少)几分之几,求A的解题方法
6、物*置的相对性
7、理解比例的意义和基本性质,会解比例。
8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
9、在*面图上标出物*置的方法:
10、绘制路线图的方法:
11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径
16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
17、求一个数比另一个数多(或少)几分之几(或百分之几)?
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、根据比的基本性质,可以把比化成最简单的整数比。
20、被减数-减数=差被减数-差=减数差+减数=被减数
21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
24、假分数与带分数的互化:
25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、已知一个数的百分之几是多少,求这个数?
28、浓度问题
29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
34、被除数 相当于分子,除数相当于分母。
35、减法的性质:
36、分数除法应用题:
37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
39、根据比的基本性质,可以把比化成最简单的整数比。
40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
42、常用统计图的优点:
43、使学生能在方格纸上用数对确定位置;
44、使学生理解倒数的意义,掌握求倒数的方法;
45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
50、“数与形相结合”的思想
——六年级下册数学知识点归纳 40句菁华
1、常见的圆柱圆锥解决问题:
2、正方形判定定理
3、圆锥解析几何定义:圆锥面和一个截它的*面(满足交线为圆)组成的空间几何图形叫圆锥。
4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。
5、整十整百数乘一位数
6、比较大小的方法:
7、多位数的写法
8、多位数的大小比较:
9、“万”“亿”作单位的数:
10、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
11、按比例分配:
12、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
13、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
14、判断这两个量的比值是否一定,比值一定就成正比例关系;
15、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)
16、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
17、以长方形的宽为底面周长,长为高。
18、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
19、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
20、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
21、圆锥的特征:
22、圆锥的相关计算公式:
23、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!
24、写法:在所写数的前面加上“—” 练习: 零上 16 摄氏度 零下
25、摄氏度
26、(1)圆柱周围的面叫做侧面。
27、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个*行四边形。
28、温馨提示:圆柱的底面是圆形,面不是椭圆。
29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch
30、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
31、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
32、一个圆柱占空间的大小,叫做这个圆柱的体积。
33、圆锥是由一个底面和一个侧面两部分组成。
34、温馨提示:
35、百分数。
36、统计。
37、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
38、两条*行线之间的距离处处相等。
39、在1、3、5、7、……、1999、2001这个数列中,数字“5”一共出现了多少次?
40、统计表制作步骤:
——七年级数学下册知识点总结 50句菁华
1、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
2、按定义分类:2.按性质符号分类:
3、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
4、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
5、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
6、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
7、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
8、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
9、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
10、两条直线被第三条直线所截:
11、垂直三要素:垂直关系,垂直记号,垂足
12、1.2
13、2.2直线*行的条件
14、1.2*面直角坐标系
15、2.2用坐标表示*移
16、3多边形及其内角和
17、几何图形
18、点、线、面、体
19、常见的几何体及其特点
20、棱柱及其有关概念:
21、整数:正整数、0、负整数,统称整数。
22、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
23、单项式的次数仅与字母有关,与单项式的系数无关。
24、多项式中的每一个单项式叫做多项式的项。
25、多项式中不含字母的项叫做常数项。
26、一个多项式有几项,就叫做几项式。
27、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
28、此法则也可以逆用,即:am-n = am÷an(a≠0)。
29、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
30、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
31、系数相乘时,注意符号。
32、相同字母的幂相乘时,底数不变,指数相加。
33、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
34、运算时注意积的符号,多项式的每一项都包括它前面的符号。
35、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
36、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
37、*方差公式中的a、b可以是单项式,也可以是多项式。
38、*方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
39、*行线的性质:
40、无理数
41、1三角形的边
42、提公因式法. 关键:找出公因式
43、十字相乘(x+p)(x+q)=x2+(p+q)x+pq
44、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linear equations of two unknowns) 。
45、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.
46、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
47、一元一次不等式的解法:
48、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
49、常见不等式的基本语言的意义:
50、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
——高中数学知识点总结 50句菁华
1、函数的极限:
2、在的导数。
3、函数在点处的导数的几何意义:
4、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
5、充要条件。
6、互为反函数的函数图象间的关系;
7、对数;
8、等差数列前n项和公式;
9、角的概念的推广;
10、两角和与差的正弦、余弦、正切;
11、函数的奇偶性;
12、函数的图象;
13、斜三角形解法举例。
14、向量;
15、实数与向量的积;
16、*面向量的坐标表示;
17、线段的定比分点;
18、不等式;
19、抛物线及其标准方程;
20、直线和*面*行的判定与性质;
21、直线和*面垂直的判定与性质;
22、三垂线定理及其逆定理;
23、异面直线的公垂线;
24、*面的法向量;
25、直线和*面所成的角;
26、向量在*面内的射影;
27、二面角及其*面角;
28、两个*面垂直的判定和性质;
29、多面体;
30、棱柱;
31、排列数公式;
32、函数图像(或方程曲线的对称性)
33、把答案盖住看例题
34、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。
35、利用导数研究多项式函数单调性的一般步骤
36、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
37、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
38、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
39、一条弧所对的圆周角等于它所对的圆心角的一半。
40、等比数列{an}中,若m+n=p+q,则
41、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
42、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
43、“包含”关系—子集注意:A?B有两种可能
44、构成函数的三要素:定义域、对应关系和值域
45、棱锥S—h—高V=Sh/3。
46、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
47、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。
48、区间的概念:设a,bR,且a
49、等比数列的有关公式
50、等比数列{an}的常用性质
——二年级下册数学知识点 40句菁华
1、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
2、地图上的方向口诀:上北下南,左西右东;
3、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
4、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。
5、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
6、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)
7、正方形有四个直角,四条边都相等;
8、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;
9、读数和写数都从高位起。万以内数的读法:读数时,要从高位读起,万位上是几就读几万,千位上是几就读几千,百位上是几就读几百,十位上是几就读几十,个位上是几就读几,中间有一个“0”或者连续两个“0”就只读一个“零”,末尾不管有几个 0都不读。
10、万以内数的写法:写数时,也要从高位写起,几个千就在千位上写几,几个百就在百位上写几,几个十就在十位上写几,几个一就在个位上写几,哪一位上一个数字也没有就写“0”占位。
11、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。例:2647=( )+( )+( )+( )
12、近似数:与准确数很接近的整十、整百、整千的数。
13、除法算式的读法:通常按照从前往后顺序读,读作除以,=读作等于,其他读法不变。
14、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
15、表内除法的知识点:
16、被除数
17、完全商
18、旋转:在*面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
19、三角形的内角和定理,及三角形外角定理。
20、两边之和大于第三边,两边之差小于第三边。
21、大角对大边。
22、认识角
23、认识直角、锐角、钝角
24、认识钟面:(1)钟面上最短最粗的针是时针,较短较粗的是分针,最细最长的是秒针。
25、认识几时几分方法:时针指在两个数之间,算小数,时针指在12和1之间,算12时,分针指着几,表示几个5分钟。
26、认识大约几时方法:时针接近几就是几时。此时,分针一般指在数字12左右。
27、比较时间:单位不同时要化成相同的时间单位再进行比较。在进行比赛(或做事)时:同样的距离(或同样的事情)所用的时间越多说明速度越慢(或效率越低);所用的时间越少说明速度越快(或效率越高)。
28、学生情况分析:
29、情感与态度目标
30、3/1分子分母同时乘以2,得到6/2,这就是整数3的一个分数形式。
31、3/1分子分母同时乘以4,得到12/4,这也是整数3的一个分数形式。
32、数轴的前点(原点)
33、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)
34、正方形的周长=边长×4:C=4a。
35、正方形的面积=边长×边长:S=a.a=a。
36、*行四边形的面积=底×高:S=ah。
37、正方体的表面积=棱长×棱长×6:S=6a×a。
38、205. 207. ( ). ( ). ( )
39、整千整百数的加减法:
40、因为13?+23?=1所以13和23互为倒数。()
——九年级化学知识点总结 40句菁华
1、化学变化的实质:分子的分化和原子的重新组合。
2、分子与原子的比较
3、灯焰分为焰心、内焰、外焰三部分。
4、加热前,要求容器外壁应干燥。
5、给物质加热时试管破裂的可能原因是:
6、紫黑色固体:高锰酸钾
7、淡黄色固体:硫磺
8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭)
9、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液
10、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液
11、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液
12、红棕色气体:二氧化氮
13、黄绿色气体:氯气
14、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。
15、我国古代三大化学工艺:造纸,制火药,烧瓷器。
16、构成原子的三种微粒:质子,中子,电子。
17、复分解反应能否发生的三个条件:生成水、气体或者沉淀。
18、具有可燃性,还原性的物质:氢气,一氧化碳,单质碳。
19、常见的三种强酸:盐酸,硫酸,硝酸。
20、碱式碳酸铜受热分解生成的三种氧化物:氧化铜,水(氧化氢),二氧化碳。
21、玻璃棒在粗盐提纯中的三个作用:搅拌、引流、转移。
22、温度对固体溶解度的`影响:
23、影响溶解速度的因素:
24、影响溶解度的三个因素:溶质的性质,溶剂的性质,温度。
25、木炭/焦炭/炭黑/活性炭:(c)
26、氢氧化钠(naoh):火碱,烧碱,苛性钠
27、氢氯酸(hcl):盐酸
28、乙醇(c2h5oh):酒精
29、乙酸(ch3cooh):醋酸
30、水通电分解(分解反应)
31、生石灰和水反应(化合反应)
32、木炭在空气中燃烧(化合反应)
33、水煤气:一氧化碳(CO)和氢气(H2)
34、天然气:甲烷(CH4)
35、生铁/钢:(Fe)
36、碳酸钠(Na2CO3):纯碱,苏打,口碱
37、氢氯酸(HCl):盐酸
38、乙酸(CH3COOH):醋酸
39、物质的变化及性质
40、物质的分类
——八年级上册地理知识点总结 40句菁华
1、*的国土面积约960万*方千米,仅次于俄罗斯,加拿大,居世界第三。陆上国界线20000多千米,有14个陆上邻国(北面俄、蒙古,朝鲜在东岸,西北哈、吉、塔,三个皆斯坦,西边是巴基,还有阿富汗,印、尼和不丹,三国在西南,南方三国家,老、缅和越南)
2、东西部晨昏差异:两地经度不同,我国东西跨经度广,约60度,经度没差15度,时间相差1小时
3、我国共有34省级行政单位,23个省,5个自治区,4个直辖市,2个特别行政区
4、人口增长过多产生的负面影响:人均粮食、布匹减少,医院就医困难,给国家、学校、社会、家庭、资源利用、生态环境都增加了沉重的负担。我国资源总量居世界前列,但人均居世界后列,全国每年新增财富大部分北新增人口消耗掉,用来发展生产和改善人民生活的财富就减少了。
5、我国在各少数民族聚居的地方实行民族区域自治,个民族不论大小,一律*等。
6、少数民族最多的省份是——云南省。
7、少数民族风情:(蒙古)族的那达慕大会(傣族)族的泼水节、孔雀舞,(藏族)族的集体舞、藏历年,(朝鲜)族的长鼓舞等。
8、个民族分布具有“大杂居,小聚居”的特点,“大杂居”有利于民族的交流,促进各民族经济的共同繁荣;“小聚居”有利于保护少数民族的风俗习惯的文化传统。
9、长江三峡(自西向东):瞿塘峡、巫峡、西陵峡。
10、冬季风寒冷干燥,是我国冬季南北温差大的主要原因之一;夏季风温暖潮湿,形成了我国的雨季。
11、土地国家基本国策:十分珍惜、合理利用土地和切实保护耕地。
12、工业生产主要是从自然界取得自然资源,以及对原材料(矿产品、农产品)进行加工、再加工的过程。
13、高新技术产业是以电子和信息类产业为龙头的产业,产品的科技含量很高。高新技术产业的特点:从业人员中科技人员所占的比重大;销售收入中,用于研究与开发的费用比例大;产品更新换代快。
14、冬季,我国南北气温差别很大;夏季,除青藏高原外,全国大多数地方普遍高温。我国冬季南北温差大的原因:主要受纬度位置的影响,其次是冬季风的影响。1月0℃等温线大致沿秦岭——淮河一线分布,该线以北低于0℃,有冰期;该线以南高于0℃,无冰期。冬季最冷的地方是黑龙江漠河,夏季最热的是新疆吐鲁番;夏季气温最低的地方是青藏高原。号称我国“三大火炉”的是重庆、武汉、南京。
15、土地资源的不利条件有:
16、*半岛与长江中下游*原纬度位置大体相同,气候和景观差异很大的原因是:两者的海陆位置不同,后者地处亚欧大陆东岸,深受雨热同期的季风气候的影响。
17、同一类型的区域可以划分出不同尺度或不同级别的区域,如我国的行政区域基本上划分为省(自治区、直辖市)、县(自治县、市)、乡(镇)三级,我国的温度带可分为热带、亚热带和温带,而温带有可进一步划分为暖温带、中温带和寒温带。(活动p3)
18、根据各地的地理位置、自然和人文的差异,将我国划分为四大地理区域:北方地区、南方地区、西北地区和青藏地区。(图5.4 p4)
19、土壤:由于水热充足,这里植被常绿。
20、南方地区气候湿热,发展农业的水热条件优越。
21、南方地区耕地多为水田,是我国重要的水田农业区。
22、上海是长江三角洲城市的核心城市,是我国最大的城市和最重要的综合型工业城市。
23、城市群不同城市间的“同城效应”
24、我国大陆海岸线长18000多千米,与我国隔海相望的国家有6个,分别是日本、韩国、菲律宾、文莱、马来西亚、印度尼西亚
25、我国人口分布不均,东部地区人口密度大,特别是东南沿海更大,西部地区人口密度小。
26、我国在各少数民族聚居的地区实行民族区域自治,设立自治机关,建立自治区、自治州、自治县、民族乡等。
27、温带大陆性气候
28、亚热带季风气候
29、青藏高原高寒气候带
30、日本水能资源丰富,森林覆盖率高。
31、日本为亚洲唯一的发达国家,科技力量雄厚,产品多销往国际市场,经济的对外依赖性强。
32、运用地图说出南极洲所处的位置、范围:地球最南端,大部分位于南极圈内。
33、南极洲的地形以高原为主,有“冰雪高原”之称,冰层的*均厚度达2000多米,淡水资源丰富。
34、欧洲西部地形以*原为主,气候沿海地区为温带海洋性气候,内陆地带为温带大陆性气候,南部为地中海气候及高原山地气候,北部为寒带气候。
35、亚洲经济发展不*衡,日本为发达国家,其他为发展*家。
36、从大洲大洋位置看,*位于亚洲东部太*洋的西岸。
37、渤海有我国的盐场长芦盐场,东海有我国的渔场舟山渔场。
38、我国总人口为13.40亿,人口特点是人口基数大,人口增长速度大,其中少数民族最多的是壮族。
39、气候:西部地区仅东南部少数地区为温带季风气候,其他的大部分地区为温带大陆性气候和高寒气候,冬季严寒而干燥,夏季高温,降水稀少,自东向西呈递减趋势。
40、*第一个高新技术产业开发区是位于北京海淀区的中关村。
——数学圆知识点总结 40句菁华
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、同圆或等圆的半径相等
4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
5、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
6、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
7、推论:经过切点且垂直于切线的直线必经过圆心
8、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
10、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
11、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
12、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
13、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
14、圆的有关性质
15、不在同一直线上的三点确定一个圆。
16、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、圆的外切四边形的两组对边的和相等外角等于内对角
20、正n边形的每个内角都等于n-2×180°/n
21、正三角形面积√3a/4 a表示边长
22、内公切线长= d-R-r外公切线长= d-R+r
23、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
24、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径
25、弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr
26、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。
27、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
28、圆的周长C=2d
29、圆锥侧面积S=rl
30、圆的标准方程
31、圆的一般方程
32、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
33、圆的周长C=2πr=πd
34、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
35、①直线L和⊙O相交 d
36、推论2 经过切点且垂直于切线的直线必经过圆心
37、圆的外切四边形的两组对边的和相等 外角等于内对角
38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
39、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
40、弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
——八年级上册生物知识点总结 30句菁华
1、酵母菌:是一类单细胞真菌,广泛用于食品和发酵工业。如烤制面包或蒸镘头、酿酒等。
2、醋酸菌:用于酿醋。
3、大型真菌:如蘑菇、木耳、灵芝等可以直接食用或制药。
4、氨基酸、有机酸、酶制剂、菌肥和农药生产方面得到应用。
5、用于基因工程:涌过基因工程用微生物产胰岛素、乙肝疫苗、干扰素等。
6、鸟类适天飞行的特点如下:
7、生物圈:地球上所有的生物与其环境的总和就叫生物圈。生物圈是地球上最大的生态系统,也是最大的生命系统。
8、昆虫是种类最多的一类动物,超过100万种,也是会飞的无脊椎动物,因而是分布最广泛的动物。
9、昆虫身体分为头、胸、腹三部分,一般有3对足,2对翅。蜘蛛、蜈蚣、虾、蟹等都不是昆虫,但它们都是节肢动物。。节肢动物的特点是:身体由很多体节构成,体表有外骨骼,足和触角分节。
10、达尔文与自然选择学说著作《物种起源》,被誉为19世纪自然科学的三大发现之一
11、生物性状的变异是普遍存在的,变异不一定都是有利的。
12、有性生殖:由两性生殖细胞结合成*卵发育成新个体的生殖方式。如:用种子繁殖
13、自然界中无性生殖方式:植物营养生殖(用营养器官根、茎、叶繁殖),分裂生殖、孢子生殖和出芽生殖等。人工控制无性生殖方式:组织培养(教材P8)、克隆
14、蝉退是指蝉退去限制身体进一步生长的外骨骼。
15、昆虫是卵生、有性生殖、体内*。
16、哺乳动物:具胎生,哺乳,体表被毛,体腔内有膈,体温恒定等特征.如兔、大熊猫
17、兔:体表被毛,用肺呼吸,心脏四腔,体循环和肺循环两条途径,体温恒定,牙分门齿和臼齿,盲肠发达(在细菌作用下,有助于植物纤维质的消化),大脑发达, 四肢灵活
18、足够的食物、水分、隐蔽地是陆生动物生存的基本环境条件
19、空中飞行的动物有昆虫(唯一会飞的无脊椎动物)、蝙蝠、鸟类等
20、鸟适于飞行的特点: ①体呈流线型②体表被羽,前肢特化为翼③骨坚而轻,多气质骨,胸部有高耸的龙骨突④胸肌发达⑤食量大消化快⑥心脏四腔,心搏次数快,循环系统完善⑦有发达的气囊,既可减轻体重又与肺构成特有的双重呼吸。总之鸟类是体表被羽、前肢特化为翼、具有迅速飞翔能力、内有气囊、体温高而恒定的一类动物
21、两栖动物:幼体生活在水中,用鳃呼吸,经变态发育成为成体,营水陆两栖生活,用肺呼吸,同时用皮肤辅助呼吸
22、食物链和食物网中的各种生物之间存在着相互依赖、相互制约的关系。其中任一环节出了问题,都会影响整个生态系统。正是由于物质流、能量流和信息流的存在,使各种生物与环境成为一个统一的整体
23、生物防治就是利用生物来防治病虫害。如用瓢虫杀灭、控制棉蚜数量
24、生物反应器:利用生物做“生产车间”,生产人类所需的某些物质,这个生物或生物的某个器官即生物反应器。目前最理想的生物反应器是“乳房生物反应器”。 它可节省费用,简化程序和减少污染
25、鱼适应水中生活最重要的两个特点:
26、体表被覆羽毛——保温和飞行
27、胸肌、龙骨突发达——适于完成飞行动作
28、体温高而恒定——释放大量能量适于飞行
29、食量大,消化吸收能力强
30、动物在自然界中作用: