数学初中全部重要知识点总结 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学,初中,知识点总结

1、方程与方程组

2、一元二次方程的二次函数的关系

3、韦达定理

4、过两点有且只有一条直线

5、过一点有且只有一条直线和已知直线垂直

6、同位角相等,两直线*行

7、两直线*行,同位角相等

8、推论3

9、角边角公理(

10、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

11、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

12、等腰三角形的性质定理

13、直角三角形斜边上的中线等于斜边上的一半

14、*行四边形判定定理1

15、*行四边形判定定理2

16、矩形性质定理1

17、菱形性质定理1

18、菱形性质定理2

19、菱形判定定理2

20、*行线等分线段定理

21、三角形中位线定理

22、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

23、相似三角形判定定理1

24、判定定理2

25、判定定理3

26、性质定理3

27、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

28、垂径定理

29、正n边形的每个内角都等于(n-2)×180°/n

30、正三角形面积√3a^2/4

31、弧长计算公式:L=n兀R/180——》L=nR

32、内公切线长=d-(R-r)

33、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

34、菱形的性质:⑴矩形具有*行四边形的一切性质;

35、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

36、含根号式子的意义:表示a的*方根,表示a的算术*方根,表示a的负的*方根。

37、相反数:

38、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。

39、有理数加法法则:

40、有理数乘法法则:


数学初中全部重要知识点总结 40句菁华扩展阅读


数学初中全部重要知识点总结 40句菁华(扩展1)

——初中数学知识点总结 50句菁华

1、实数

2、整式与分式

3、一元二次方程根的情况

4、函数

5、全等三角形的对应边、对应角相等

6、勾股定理的逆定理

7、*行四边形判定定理1

8、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

9、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

10、点、线、面、体

11、圆的内部可以看作是圆心的距离小于半径的点的集合

12、线段的中点:

13、一元一次方程

14、解一元一次方程的一般步骤:

15、圆的外切四边形的两组对边的和相等

16、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

17、乘积的符号的确定

18、定义:有一组邻边相等的*行四边形叫做菱形

19、推论2经过切点且垂直于切线的直线必经过圆心

20、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

21、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

22、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

23、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)

24、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

25、人们通常用一条直线上的点表示数,这条直线叫做数轴。

26、两个负数,绝对值大的反而小。

27、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

28、有理数中仍然有:乘积是1的两个数互为倒数。

29、过两点有且只有一条直线。

30、同位角相等,两直线*行。

31、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

32、定理四边形的内角和等于360°。

33、四边形的外角和等于360°。

34、推论任意多边的外角和等于360°。

35、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。

36、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

37、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。

38、定理1关于中心对称的两个图形是全等的

39、等腰梯形的两条对角线相等。

40、(2)合比性质:

41、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。

42、圆是定点的距离等于定长的点的集合。

43、①两圆外离d﹥R+r。

44、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。

46、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

47、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

48、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。

49、*行公理推论:*行于同一直线的两条直线互相*行。如果b//a,c//a,那么b//c

50、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。


数学初中全部重要知识点总结 40句菁华(扩展2)

——初中数学重要知识点总结 40句菁华

1、不等式与不等式组

2、3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

3、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

4、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。

5、列方程解应用题的常用公式:

6、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

7、函数

8、点,线,面

9、直线外一点与直线上各点连接的所有线段中,垂线段最短

10、同位角相等,两直线*行

11、两直线*行,同旁内角互补

12、定理

13、推论1

14、推论2

15、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

16、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

17、*行四边形性质定理2

18、矩形性质定理1

19、菱形判定定理1

20、菱形判定定理2

21、正方形性质定理1

22、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

23、等腰梯形的两条对角线相等

24、等腰梯形判定定理

25、三角形中位线定理

26、梯形中位线定理

27、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

28、圆是定点的距离等于定长的点的集合

29、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

30、弦切角定理

31、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

32、不在同一直线上的三点确定一个圆。

33、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

34、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

35、推论1经过圆心且垂直于切线的直线必经过切点

36、圆的外切四边形的两组对边的和相等外角等于内对角

37、定理相交两圆的连心线垂直*分两圆的公共弦

38、正三角形面积√3a/4a表示边长

39、内公切线长=d-(R-r)外公切线长=d-(R+r)

40、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径


数学初中全部重要知识点总结 40句菁华(扩展3)

——数学初中知识点总结 40句菁华

1、有理数:①整数→正整数,0,负整数;

2、过两点有且只有一条直线

3、同角或等角的余角相等——余角=90-角度。

4、直线外一点与直线上各点连接的所有线段中,垂线段最短

5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

6、同位角相等,两直线*行

7、同旁内角互补,两直线*行

8、两直线*行,内错角相等

9、推论

10、角边角公理(

11、等腰三角形的判定定理

12、直角三角形斜边上的中线等于斜边上的一半

13、逆定理

14、*行四边形判定定理2

15、矩形判定定理2

16、菱形面积=对角线乘积的一半,即S=(a×b)÷2

17、等腰梯形的两条对角线相等

18、对角线相等的梯形是等腰梯形

19、三角形中位线定理

20、梯形中位线定理

21、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

22、圆是以圆心为对称中心的中心对称图形

23、切线的判定定理

24、正n边形的每个内角都等于(n-2)×180°/n

25、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

26、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

27、两组对边*行的四边形是*行四边形。

28、判定:

29、定义:有一个角是直角的*行四边形叫做矩形

30、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

31、对称性:等腰梯形是轴对称图形

32、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

33、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。

34、公式与性质

35、多边形外角和定理:

36、垂径定理:垂直于弦的直径*分这条弦并且*分弦所对的两条弧

37、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

38、推论1经过圆心且垂直于切线的直线必经过切点

39、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

40、定理:一条弧所对的圆周角等于它所对的圆心角的一半


数学初中全部重要知识点总结 40句菁华(扩展4)

——初一数学上册知识点总结 50句菁华

1、点、线、面、体

2、线段、射线、直线

3、线段的性质

4、角的表示

5、多边形:

6、方程

7、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net).

8、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

9、连接两点间的线段的长度,叫做这两点的距离(distance).

10、括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

11、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

12、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

13、检:检验所求的解是否符合题意.

14、0表示的意义

15、单项式的系数:

16、单项式的次数:

17、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。

18、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

19、一元一次不等式与一次函数的综合运用:

20、解不等式的诀窍

21、解不等式组的口诀

22、同角或等角的补角相等

23、直线外一点与直线上各点连接的所有线段中,垂线段最短

24、如果两条直线都和第三条直线*行,这两条直线也互相*行

25、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

26、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

27、直角三角形斜边上的中线等于斜边上的一半

28、定理 线段垂直*分线上的点和这条线段两个端点的距离相等 ?

29、同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

30、零指数与负指数公式:

31、配方:

32、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

33、判断三条线段能否组成三角形:

34、第三边取值范围:

35、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

36、培养学生获取信息,分析问题,处理问题的能力。

37、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

38、等式的性质:

39、只有符号不同的两个数称互为相反数。

40、左边第一个非零的数字起,所有的数字都是有效数字。

41、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

42、2 有理数

43、系数:;

44、多项式:;

45、去分母

46、去括号

47、系数化为1

48、一些实际问题中的规律和等量关系:

49、同号两数相加,取相同的符号,并把绝对值相加;

50、2.1*行线


数学初中全部重要知识点总结 40句菁华(扩展5)

——数学知识点总结 40句菁华

1、面积、体积最(大)问题

2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

3、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

4、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

5、1柱、锥、台、球的结构特征

6、2空间几何体的三视图和直观图

7、3空间几何体的表面积与体积

8、1.2空间中直线与直线之间的位置关系

9、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

10、2.1直线与*面*行的判定

11、2.2*面与*面*行的判定

12、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。

13、二面角的记法:二面角α-l-β或α-AB-β

14、定理:垂直于同一个*面的两条直线*行。

15、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。

16、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直*分线

17、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

18、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

19、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

20、①直线L和⊙O相交d﹤r

21、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

22、如果两个圆相切,那么切点一定在连心线上

23、定理:把圆分成n(n≥3):

24、定理:

25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26、弧长计算公式:L=n兀R/180

27、扇形面积公式:

28、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。

29、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

30、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

31、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

32、集合的表示方法:常用的有列举法、描述法和图文法

33、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.

34、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

35、求出每段的解析式.

36、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

37、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

38、an与Sn关系不清致误

39、不等式恒成立问题致误

40、忽视基本不等式应用条件致误


数学初中全部重要知识点总结 40句菁华(扩展6)

——物理知识点总结 40句菁华

1、光在均匀介质中是沿直线传播的。大气层是不均匀的 初中政治,当光从大气层外射到地面时,光线发了了弯折

2、光线:表示光传播方向的直线,即沿光的传播路线画一直线,并在直线上画上箭头表示光的传播方向(光线是假想的,实际并不存在)

3、*衡物体的临界问题:

4、电路:把电源、用电器、开关、导线连接起来组成的电流的路径。

5、电流的方向:从电源正极流向负极。

6、电源是把其他形式的能转化为电能。如干电池是把化学能转化为电能。发电机则由机械能转化为电能。

7、电压表的使用规则:①电压表要并联在电路中;②电流要从"+"接线柱流入,从"—"接线柱流出;③被测电压不要超过电压表的量程;

8、欧姆定律:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。

9、解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

10、力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

11、N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。

12、明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

13、电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。

14、闭合电路部分路,外电路和内电路,遵循定律属欧姆。

15、几个力*衡,则一个力是与其它力合力*衡的力。

16、两个力的合力:F(max)—F(min)≤F合≤F(max)+F(min)。 三个大小相等的共面共点力*衡,力之间的夹角为120°。

17、轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

18、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

19、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

20、匀变速直线运动中的*均速度

21、自由落体

22、沿粗糙斜面下滑的物体 a=g(sinα—μcosα)

23、第一个是等时圆

24、投影仪的镜头是凸透镜;

25、力的单位:国际单位制中力的单位是牛顿简称牛,用N 表示。

26、力的三要素:力的大小、方向、和作用点。

27、力的表示法: 力的示意图:用一根带箭头的线段把力的大小、方向、作用点表示出来,如果没有大小,可不表示,在同一个图中,力越大,线段应越长

28、滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN

29、摩擦力可以是阻力,也可以是动力。

30、静摩擦有无的判断:概念法(相对运动趋势);二力*衡法;牛顿运动定律法;假设法(假设没有静摩擦)。

31、压强的计算公式及单位:公式:p=F/s,p表示压强,F表示压力,S表示受力面积压力的单位是N,面积的单位是m2,压强的单位是N/m2,叫做帕斯卡,记作Pa。1Pa=1N/m2。(帕斯卡单位很小,一粒*放的西瓜子对水*面的压强大约为20Pa)

32、增大压强与减小压强的方法:

33、是指上部开口,底部连通的容器。

34、连通器的原理:

35、连通器中各容器液面相*的条件是:(1)连通器中只有一种液体,(2)液体静止。

36、像液体一样,在空气的内部向各个方向也有压强,这个压强叫做大气压强,简称大气压。大气压具有液体压强的特点。

37、活塞式抽水机和离心式水泵:都是利用大气压把水从低处抽到高处的。

38、浮力:浸在液体中的物体受到液体向上的托力叫做浮力。

39、浸在液体中的物体受到的浮力大小与物体浸在液体中的体积和液体的密度有关。

40、流体流动时,流速大的地方压强小,流速小的地方压强大。


数学初中全部重要知识点总结 40句菁华(扩展7)

——生物必修二知识点总结 40句菁华

1、学习生物学知识要重在理解,勤于思考。

2、什么是种间关系?

3、什么是互利共生?

4、什么是群落的垂直结构?

5、互利共栖:两种生物生活在一起,互相依赖,彼此有利,即使分开,都能很好生活的现象。

6、减数第一次_减数第二次_间通常没有间期,染色体不再复制。

7、大多数真核细胞通常有一个细胞核,但哺乳动物成熟的红细胞无细胞核,有的细胞有多个细胞核。

8、反射的结构基础:反射弧

9、大脑的高级功能:言语区: S区(不能讲话)、W(不能写字)、H(不能听懂话)、V(不能看懂文字)

10、激素调节的实例

11、分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。

12、孟德尔对分离现象的原因提出如下假说:生物的性状是由遗传因子决定的;体细胞中遗传因子是成对存在的;生物体再形成生殖细胞—配子时,成对的遗传因子彼此分离,分别进入不同的配子中;*时,雌雄配子的结合是随机的。

13、基因分离的实质是:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数形成配子的过程中,等位基因会随着同源染色体的分开而分离,分别进入两个配子中,独立的随着配子遗传给后代。

14、基因的自由组合定律的实质是:位于非同源染色体上的非等位基因的分离和自由组合是互不干扰的;在减数过程中,在同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。

15、DNA分子双螺旋结构的主要特点:DNA分子是由两条链组成的,这两条链按反向*行方式盘旋成双螺旋结构;DNA分子中的脱氧核苷酸和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧;两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律。

16、基因通过控制酶的合成来控制代谢过程,进而控制生物的性状。

17、功能特性:选择透过性举例:(腌制糖醋蒜,红墨水测定种子发芽率,判断种子胚、胚乳是否成活)

18、种群密度的测量方法:样方法(植物和运动能力较弱的动物)、标志重捕法(运动能力强的动物)

19、在内环境中发生和不发生的生理过程

20、组织水肿及其产生原因分析

21、染色体:在细胞分裂期,细胞核内长丝状的染色质高度螺旋化,缩短变粗,就形成了光学显微镜下可以看见的染色体。

22、非特异性免疫和特异性免疫

23、下图是初次免疫反应和二次免疫反应过程中抗体浓度变化和患病程度曲线图,据图回答相关问题

24、反射:是神经系统的基本活动方式。是指在中枢神经系统参与下,动物体或人体对内外环境变化作出的规律性应答。

25、1859年达尔文进化论

26、生物体具应激性,因而能适应周围环境。

27、生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。

28、活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。

29、线粒体是活细胞进行有氧呼吸的主要场所。

30、核糖体是细胞内合成为蛋白质的场所。

31、构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系.协调一致的,一个细胞是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。

32、细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地*均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。

33、细胞分化是一种持久性的变化,它发生在生物体的整个生命进程中,但在胚胎时期达到限度。

34、酶是活细胞产生的一类具有生物催化作用的有机物

35、神经调节的基本方式:反射

36、大脑的高级功能:除了对外界的感知及控制机体的反射活动外,还具有语言.学习.记忆.和思维等方面的高级功能。

37、血糖*衡的调节

38、抗原:能够引起机体产生特异性免疫反应的物质(如:细菌.病毒.人体中坏死.变异的细胞.组织)

39、生态环境问题是全球性的问题。

40、生物多样性包括:物种多样性、基因多样性、生态系统多样性

相关词条