1、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
2、求解与函数有关的问题易忽略定义域优先的原则。
3、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
5、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
6、反正弦、反余弦、反正切函数的取值范围分别是
7、你还记得某些特殊角的三角函数值吗?
8、.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量*行,但与任意向量都不垂直。
9、是向量与*行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
10、对不重合的两条直线
11、直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
12、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
13、利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
14、解析几何问题的求解中,*面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
15、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。
16、线面*行和面面*行的定义、判定和性质定理你掌握了吗?线线*行、线面*行、面面*行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种*行之间转换的条件是什么?
17、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。
18、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
19、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
20、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
21、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
22、函数的图象的*移,方程的*移以及点的*移公式易混:
23、形如的周期都是,但的周期为。
24、正弦定理时易忘比值还等于2R。
25、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)
26、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
27、求概率时,正难则反(根据p1+p2+……+pn=1);
28、函数的基本概念
29、如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).
30、函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.
31、求导
32、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
33、Venn图:
34、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
35、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
36、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
38、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
39、二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
40、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
——初中数学知识点总结 50句菁华
1、实数
2、整式与分式
3、一元二次方程根的情况
4、函数
5、全等三角形的对应边、对应角相等
6、勾股定理的逆定理
7、*行四边形判定定理1
8、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
9、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
10、点、线、面、体
11、圆的内部可以看作是圆心的距离小于半径的点的集合
12、线段的中点:
13、一元一次方程
14、解一元一次方程的一般步骤:
15、圆的外切四边形的两组对边的和相等
16、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
17、乘积的符号的确定
18、定义:有一组邻边相等的*行四边形叫做菱形
19、推论2经过切点且垂直于切线的直线必经过圆心
20、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
21、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
22、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
23、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)
24、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
25、人们通常用一条直线上的点表示数,这条直线叫做数轴。
26、两个负数,绝对值大的反而小。
27、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
28、有理数中仍然有:乘积是1的两个数互为倒数。
29、过两点有且只有一条直线。
30、同位角相等,两直线*行。
31、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
32、定理四边形的内角和等于360°。
33、四边形的外角和等于360°。
34、推论任意多边的外角和等于360°。
35、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
36、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
37、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
38、定理1关于中心对称的两个图形是全等的
39、等腰梯形的两条对角线相等。
40、(2)合比性质:
41、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。
42、圆是定点的距离等于定长的点的集合。
43、①两圆外离d﹥R+r。
44、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
47、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
48、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
49、*行公理推论:*行于同一直线的两条直线互相*行。如果b//a,c//a,那么b//c
50、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。
——数学知识点总结 40句菁华
1、面积、体积最(大)问题
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
3、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
4、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
5、1柱、锥、台、球的结构特征
6、2空间几何体的三视图和直观图
7、3空间几何体的表面积与体积
8、1.2空间中直线与直线之间的位置关系
9、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
10、2.1直线与*面*行的判定
11、2.2*面与*面*行的判定
12、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
13、二面角的记法:二面角α-l-β或α-AB-β
14、定理:垂直于同一个*面的两条直线*行。
15、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。
16、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直*分线
17、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
18、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
19、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
20、①直线L和⊙O相交d﹤r
21、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
22、如果两个圆相切,那么切点一定在连心线上
23、定理:把圆分成n(n≥3):
24、定理:
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26、弧长计算公式:L=n兀R/180
27、扇形面积公式:
28、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。
29、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
30、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
31、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
32、集合的表示方法:常用的有列举法、描述法和图文法
33、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.
34、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
35、求出每段的解析式.
36、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
37、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
38、an与Sn关系不清致误
39、不等式恒成立问题致误
40、忽视基本不等式应用条件致误
——高三数学知识点总结 40句菁华
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
4、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
5、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
6、利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
7、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.
8、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
9、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
10、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
11、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
13、计算直线与*面所成的角关键是作面的垂线找射影,或向量法(直线上向量与*面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与*面上以斜足为顶点的角的两边所成角相等斜线在*面上射影为角的*分线.
14、球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
15、导数与极值、导数与最值:
16、直线方程:高考时不单独命题,易和圆锥曲线结合命题
17、圆方程
18、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
19、数列的函数特征
20、复合函数的有关问题
21、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
22、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
23、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
24、圆柱体:
25、拟柱体
26、圆柱
27、记准均值、方差、标准差公式;
28、求概率时,正难则反(根据p1+p2+……+pn=1);
29、注意计数时利用列举、树图等基本方法;
30、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
31、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°
32、已知三边,或两边及其夹角用余弦定理
33、圆锥体:
34、写出点M的集合;
35、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
36、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
37、圆锥曲线:
38、导数、导数的应用(高考必考)
39、圆锥曲线
40、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分
——六年级上册数学知识点 50句菁华
1、整数加法计算法则:
2、小数乘法法则:
3、小数乘法意义:
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知A比B多(或少)几分之几,求A的解题方法
6、物*置的相对性
7、理解比例的意义和基本性质,会解比例。
8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
9、在*面图上标出物*置的方法:
10、绘制路线图的方法:
11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径
16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
17、求一个数比另一个数多(或少)几分之几(或百分之几)?
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、根据比的基本性质,可以把比化成最简单的整数比。
20、被减数-减数=差被减数-差=减数差+减数=被减数
21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
24、假分数与带分数的互化:
25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、已知一个数的百分之几是多少,求这个数?
28、浓度问题
29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
34、被除数 相当于分子,除数相当于分母。
35、减法的性质:
36、分数除法应用题:
37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
39、根据比的基本性质,可以把比化成最简单的整数比。
40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
42、常用统计图的优点:
43、使学生能在方格纸上用数对确定位置;
44、使学生理解倒数的意义,掌握求倒数的方法;
45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
50、“数与形相结合”的思想
——初中七年级数学知识点 50句菁华
1、生活中的立体图形
2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
3、代数式
4、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
5、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
6、解一元一次方程的一般步骤:
7、普查与抽样调查
8、扇形统计图
9、整式的乘除的公式运用(六条)及逆运用(数的计算)。
10、整式的乘法公式(两条)。
11、互为余角和互为补角和
12、必然事件不可能事件,不确定事件
13、方法归纳:(1)求边相等可以利用
14、证明:
15、1周角=__________*角=_____________直角=____________.
16、*行线的性质:两直线*行,_________相等,________相等,________互补.
17、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
18、相反数:
19、有理数乘方的法则:
20、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
21、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
23、高线、中线、角*分线的意义和做法
24、正数:大于0的数。
25、负数:小于0的数。
26、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
27、整数:正整数、0、负整数,统称整数。
28、数轴的三要素:原点、正方向、单位长度。
29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
30、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
31、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5、a?b=a+(?b)减去一个数,等于加这个数的相反数。
32、乘积是1的两个数互为倒数。
33、乘法结合律:(ab)c=a(bc)
34、整式:单项式和多项式的统称叫整式。
35、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
36、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
37、若系数是带分数,要化成假分数。
38、在单项式中字母不可以做分母,分子可以。
39、单独的数“0”的系数是零,次数也是零。
40、在直线上任取一个点表示数0,这个点叫做原点(origin)。
41、有理数减法法则
42、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
43、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly
44、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
45、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
46、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。
47、角∠(angle)也是一种基本的几何图形。
48、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
49、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
50、等角的补角相等,等角的余角相等。
——语文高考知识点总结 50句菁华
1、揭:揭竿为旗(举)
2、却:却匈奴七百余里(使动,使退却)
3、愚:焚百家之言,以愚黔首(形作动,愚弄)
4、声旁读音与本字读音相同,如“殚精竭虑”的“殚”声旁 “单”与“殚”读音都是“dān”。
5、写作者与友人于扁舟举杯共饮的句子是:驾一叶之扁舟,举匏樽以相属。
6、用比喻的修辞手法,感叹我们个人在天地间生命的短暂和个体的渺小的句子:
7、写女子家人对其不理解的句子是:兄弟不知,咥其笑矣。
8、《离骚》中表明自己所处的社会本来就是善于投机取巧,违背规矩的现状的两句:
9、《离骚》中屈原委婉表达自己后悔选择做官,想要归隐的两句:悔相道之不察兮,延伫乎吾将反。
10、表现诗人嫉恶如仇、不同流合污的诗句:宁溘死以流亡兮,余不忍为此态也。
11、《蜀道难》中写出水石相激、山谷轰鸣的惊险场面的句子是:飞湍瀑流争喧豗,砯崖转石万壑雷。
12、杜甫《登高》中为我们营造了一幅气势磅礴的长江秋日图的句是:无边落木萧萧下,不尽长江滚滚来。
13、李煜的《虞美人》一词中用比喻.夸张.设问手法写出愁思的多与深广的句子是:问君能有几多愁?恰似一江春水向东流。
14、具体描写“江山如画”之意的句子是:乱石穿空,惊涛拍岸,卷起千堆雪。
15、亡走赵,赵不内
16、方正之不容也
17、于:
18、与马匹有关的:马、驹、厩、策、羁、縻、辔、逸、驭、御、驾、辕、辙
19、《离骚》中表明当时社会中的人们违背准则,把苟合取悦别人奉为信条的两句:背绳墨以追曲兮,竞周容以为度。
20、《蜀道难》中运用夸张修辞方法,写出秦蜀之间崇山叠岭、不可逾越的句子是:西当太白有鸟道,可以横绝峨眉巅。
21、杜甫在《登高》中发出:“万里悲秋常作客,百年多病独登台”的感慨,抒发了漂泊异乡,年老体衰的惆怅之情,也蕴含着与生命的衰弱顽强抗争的精神。
22、李白,盛唐诗人,字(太白),号(青莲居士)。现存诗歌九百多首,人称(诗仙)。他的诗歌想像丰富奇特,风格雄健奔放,色彩瑰丽,语言清新自然,是继屈原之后的伟大的(浪漫主义)诗人。杜甫曾称赞他“笔落惊风雨,(诗成泣鬼神)。”
23、《劝学》:是一篇论述学习的重要意义,劝导人们以正确的目的、态度和方法去学习的散文。本文的特色是以喻明理的论证艺术。
24、巫医乐师百工之人,不耻相师(师:名作动,学习)
25、表罢免官职的词语
26、破天荒:形容创举或头一次出现的新鲜事。
27、紧箍咒:比喻束缚人的东西。
28、搞名堂:形容那些让人不明不白甚至有点神秘色彩的行动。
29、安身立命——安身:容身,指在某地居住或生活;立命:使精神安定。指生活有着落,精神有寄托。
30、冒号一般管到句终,若只管到句子中间,则不能用冒号。
31、在非提示性话语的后边不用冒号。
32、屈*疾王听之不聪也,谗谄之蔽明也,邪曲之害公也,方正之不容也,故忧愁幽思而作《离骚》。(司马迁《史记"屈原列传》)
33、句读之不知,惑之不解,或师焉,或不焉,小学而大遗,吾未见其明也。(韩愈《师说》)
34、固:
①秦孝公据崤函之固(险固)
②固国不以山溪之险(巩固)
③汝心之固,固不可彻(顽固)
④卒买鱼烹食,得鱼腹中书,固以怪之矣(本来)
35、在文中强调学习应当用心专一,并且从正面设喻,指出即使像蚯蚓那样弱小,如果用心专一也会有所成的句子是:蚓无爪牙之利,筋骨之强,上食埃土,下饮黄泉,用心一也。
(二)《逍遥游》
36、文中写宋荣子看淡了世间的荣辱,不会因为外界的评价而更加奋勉或沮丧的句子是:
且举世誉之而不加劝,举世非之而不加沮。
37、叙写江水流逝却始终长流不息,月亮盈亏却无所增减的哲理的句子:
逝者如斯,而未尝往也,盈虚者如彼,而卒莫消长也。
38、《离骚》中表明自己遭到不公正对待的原因之一是在上位者的荒.唐的两句:
怨灵修之浩荡兮,终不察夫民心。
39、既交待秋天的背景又蕴含离别之意的句子是:浔阳江头夜送客,枫叶荻花秋瑟瑟。
(十一)《锦瑟》
40、仁义不施而攻守之势异也。
译:不施行仁政,攻和守的形势变了。
1、字音(注意以下几种类型)
(1)多音字,
如“作(zuō/zuò)”“症(zhēng/zhèng)”“强(qiáng/qiǎng)”“模(mó/mú)”
(2)形近字,
如“呛(qiàng)”“怆(chuàng)”
(3)易错字,如前鼻后鼻音(民mín—明míng)、卷舌音(寺sì—饰shì)
(4)生僻字,如噽(pǐ)罅(xià)隙
(5)成语中古音,
虚与委(wēi)蛇(yí)——虚情假意,敷衍应酬。
建议:
①以读带写,作好标记,提高效率;
②以印发的资料和教材中的字音注释为主。
41、心理描写
心理描写是对人物在一定的环境下产生的想法、感触、联想等内心的思想情感活动的描写,它旨在深刻地揭示人物的精神世界和思想品质。挖掘人物的思想感情,以刻画人物形象内在性格特征的一种描写方法。
1、上乘:一般指境界高妙的文学作品、选工精巧的工艺品和传世的美术作品。
42、“松梅竹菊”寓高洁:
松梅竹菊是品行高洁、不畏邪恶的形象化身,古人常用这四种形象表现高洁的情操。刘桢《赠从弟》有云:“岂不罹凝寒,松柏有本性。”王吉《咏竹》则言:“岁寒别有非常操,不比寻常草木同。”元稹《菊花》一诗有云:“不是花中偏爱菊,此花开尽更无花”。写梅的诗句也有很多,如“遥知不是雪,为有暗香来。”“零落成泥碾作尘,只有香如故。”2004年北京卷考察的是苏轼的《红梅》,该诗表现出了红梅不畏严寒,不与桃杏争春的高洁品格。
43、近义词辨析
(原则——存同求异,通过以下作对比)
(1)意义(范围、程度、侧重点)
(2)色彩(褒贬、书面和口语)
(3)用法(对象、搭配、词性)
建议:
①排除法:选定肯定对象,排除其它。
②试代法:代入两者,对比效果。
44、表现诗人洁身自好、自我完善的诗句:民生各有所乐兮,余独好修以为常。
(八)《蜀道难》
45、屈原至于江滨,被发行吟泽畔。
词类活用
46、词语读音
修姱、嫉妒、謇、忳郁悒、侘傺
溘死、鸷鸟、方圜、攘诟、谣诼、延伫、芰荷、偭、兰皋、椒丘
岌岌、杂糅、昭质、可惩
孔雀东南飞
47、师:
①道之所存,师之所存也(老师)
②于其身也,则耻师焉(名作动,从师)
48、表现诗人洁身自好、自我完善的诗句:民生各有所乐兮,余独好修以为常。
(八)《蜀道难》
49、表调动官职的词语
迁:调动官职,一般指提升。如:迁东郡太守。(《汉书·王尊传》)
徙:一般的官职调动。如:徙王信为楚王。(《淮阴侯列传》)
调:变换官职。如:调为陇西都尉。(《汉书·袁盎传》)
转:调动官职。如:再转复为太史令。衡不慕当世,所居之官辄积年不徙。(《张衡传》)
补:补充空缺官职。如:太守察王尊廉,补辽西盐官长。(《汉书·王尊传》)
改:改任官职。如:改刑部详覆官。(《宋史·王济传》)
出:京官外调。如:出为河间相。(《张衡传》)
50、肖像描写
指把人的容貌(脸型、五官)、神情、身体形态、衣饰、姿势、风度等方面的某一部分或几个部分,用生动具体的语言描述出来。来揭示人物性格的一种方法。人物的的外貌和人物内心世界密切的联系。
——七年级下册数学知识点总结 40句菁华
1、按性质符号分类:
2、对于数轴上的任意两个点,靠右边的点所表示的数较大。
3、乘方与开方
4、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。
5、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。
6、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
7、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。
10、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
11、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
12、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
13、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
14、*移:
15、大于0的数叫做正数(positive number)。
16、在正数前面加上负号“-”的数叫做负数(negative number)。
17、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
18、正数大于0,0大于负数,正数大于负数。
19、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
20、有理数减法法则
21、有理数乘法法则
22、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
24、根据有理数的乘法法则可以得出
25、做有理数混合运算时,应注意以下运算顺序:
26、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
27、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
28、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
29、单项式中的数字因数叫做这个单项式的系数(coefficient)。
30、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。
31、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
32、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。
33、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
34、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
35、等角的补角相等,等角的余角相等。
36、相反数的几何意义
37、单项式的系数:是指单项式中的数字因数;
38、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。
39、单项式和多项式统称为整式。
40、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
——数学初中知识点总结 40句菁华
1、有理数:①整数→正整数,0,负整数;
2、过两点有且只有一条直线
3、同角或等角的余角相等——余角=90-角度。
4、直线外一点与直线上各点连接的所有线段中,垂线段最短
5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
6、同位角相等,两直线*行
7、同旁内角互补,两直线*行
8、两直线*行,内错角相等
9、推论
10、角边角公理(
11、等腰三角形的判定定理
12、直角三角形斜边上的中线等于斜边上的一半
13、逆定理
14、*行四边形判定定理2
15、矩形判定定理2
16、菱形面积=对角线乘积的一半,即S=(a×b)÷2
17、等腰梯形的两条对角线相等
18、对角线相等的梯形是等腰梯形
19、三角形中位线定理
20、梯形中位线定理
21、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
22、圆是以圆心为对称中心的中心对称图形
23、切线的判定定理
24、正n边形的每个内角都等于(n-2)×180°/n
25、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
26、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
27、两组对边*行的四边形是*行四边形。
28、判定:
29、定义:有一个角是直角的*行四边形叫做矩形
30、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等
31、对称性:等腰梯形是轴对称图形
32、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
33、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
34、公式与性质
35、多边形外角和定理:
36、垂径定理:垂直于弦的直径*分这条弦并且*分弦所对的两条弧
37、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
38、推论1经过圆心且垂直于切线的直线必经过切点
39、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
40、定理:一条弧所对的圆周角等于它所对的圆心角的一半