1、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
2、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
3、角
4、内错角相等,两直线*行
5、两直线*行,内错角相等
6、推论
7、圆是定点的距离等于定长的点的集合
8、圆是以圆心为对称中心的中心对称图形
9、*面向量:初等运算、坐标运算、数量积及其应用
10、复数:复数的概念与运算
11、数列的通项公式
12、有理数:①整数→正整数,0,负整数;
13、同角或等角的补角相等
14、过一点有且只有一条直线和已知直线垂直
15、边边边公理(SSS):有三边对应相等的两个三角形全等
16、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
17、角的*分线是到角的两边距离相等的所有点的集合
18、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
19、*行四边形判定定理3
20、矩形判定定理2
21、菱形性质定理1
22、菱形性质定理2
23、菱形判定定理2
24、等腰梯形性质定理
25、等腰梯形的两条对角线相等
26、对角线相等的梯形是等腰梯形
27、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
28、*行于三角形的一边,并且和其他两边相交的直线,
29、相似三角形判定定理1
30、判定定理2
31、性质定理3
32、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
33、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
34、到已知角的两边距离相等的点的轨迹,是这个角的*分线
35、切线的判定定理
36、弦切角定理
37、①两圆外离
38、元素的确定性;
39、集合的表示方法:列举法与描述法。
40、有限集含有有限个元素的集合
——数学知识点总结 40句菁华
1、面积、体积最(大)问题
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
3、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
4、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
5、1柱、锥、台、球的结构特征
6、2空间几何体的三视图和直观图
7、3空间几何体的表面积与体积
8、1.2空间中直线与直线之间的位置关系
9、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
10、2.1直线与*面*行的判定
11、2.2*面与*面*行的判定
12、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
13、二面角的记法:二面角α-l-β或α-AB-β
14、定理:垂直于同一个*面的两条直线*行。
15、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。
16、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直*分线
17、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
18、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
19、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
20、①直线L和⊙O相交d﹤r
21、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
22、如果两个圆相切,那么切点一定在连心线上
23、定理:把圆分成n(n≥3):
24、定理:
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26、弧长计算公式:L=n兀R/180
27、扇形面积公式:
28、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。
29、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
30、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
31、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
32、集合的表示方法:常用的有列举法、描述法和图文法
33、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.
34、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
35、求出每段的解析式.
36、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
37、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
38、an与Sn关系不清致误
39、不等式恒成立问题致误
40、忽视基本不等式应用条件致误
——数学分析知识点的总结 40句菁华
1、代数式
2、整式与分式
3、韦达定理
4、一元二次方程根的情况
5、角边角公理(
6、四边形的外角和等于360°
7、如果两条直线都和第三条直线*行,这两条直线也互相*行
8、同旁内角互补,两直线*行
9、三角形内角和定理:
10、*行四边形性质定理1
11、*行四边形性质定理3
12、矩形性质定理2
13、矩形判定定理1
14、菱形性质定理1
15、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
16、等腰梯形判定定理
17、对角线相等的梯形是等腰梯形
18、判定定理2
19、性质定理3
20、弦切角定理
21、①两圆外离
22、弧长计算公式:L=n兀R/180——》L=nR
23、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。
24、必修课程由5个模块组成:
25、*面向量:初等运算、坐标运算、数量积及其应用
26、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
27、导数:导数的概念、求导、导数的应用
28、复数:复数的概念与运算
29、绝对值:
30、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。
31、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
32、有理数乘法的运算律:
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
34、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
35、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
36、三角函数的单调性判断致误
37、忽视零向量致误
38、数列中的最值错误
39、面积体积计算转化不灵活致误
40、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
——数学圆知识点总结 40句菁华
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、同圆或等圆的半径相等
4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
5、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
6、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
7、推论:经过切点且垂直于切线的直线必经过圆心
8、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
10、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
11、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
12、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
13、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
14、圆的有关性质
15、不在同一直线上的三点确定一个圆。
16、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、圆的外切四边形的两组对边的和相等外角等于内对角
20、正n边形的每个内角都等于n-2×180°/n
21、正三角形面积√3a/4 a表示边长
22、内公切线长= d-R-r外公切线长= d-R+r
23、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
24、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径
25、弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr
26、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。
27、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
28、圆的周长C=2d
29、圆锥侧面积S=rl
30、圆的标准方程
31、圆的一般方程
32、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
33、圆的周长C=2πr=πd
34、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
35、①直线L和⊙O相交 d
36、推论2 经过切点且垂直于切线的直线必经过圆心
37、圆的外切四边形的两组对边的和相等 外角等于内对角
38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
39、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
40、弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
——初中数学知识点总结 100句菁华
1、整式与分式
2、解一元二次方程的步骤:
3、韦达定理
4、如果两条直线都和第三条直线*行,这两条直线也互相*行
5、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
6、定理2
7、直角三角形斜边上的中线等于斜边上的一半
8、勾股定理
9、勾股定理的逆定理
10、四边形的外角和等于360°
11、*行四边形判定定理1
12、*行四边形判定定理3
13、矩形判定定理2
14、菱形面积=对角线乘积的一半,即S=(a×b)÷2
15、正方形性质定理1
16、三角形中位线定理
17、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
18、混合运算法则:先乘方,后乘除,最后加减。
19、性质定理1
20、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
21、性质定理3
22、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
23、圆是定点的距离等于定长的点的集合
24、圆的外部可以看作是圆心的距离大于半径的点的集合
25、同圆或等圆的半径相等
26、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
28、添括号法则
29、垂径定理
30、圆是以圆心为对称中心的中心对称图形
31、解一元一次方程的一般步骤:
32、普查与抽样调查
33、切割线定理
34、有关数轴
35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
36、倒数:乘积为1的两个数互为倒数,0没有倒数。
37、内公切线长=d-(R-r)
38、三角形的分类
39、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
40、三角形内角和定理:三角形三个内角的和等于180°
41、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
42、判定:
43、性质:矩形的四个角都是直角,矩形的对角线相等
44、s菱=争6(n、6分别为对角线长)
45、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
46、2整式的加减
47、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
48、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
49、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。
50、多边形对角线的条数:
51、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
52、定理:相交两圆的连心线垂直*分两圆的公共弦
53、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
54、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
55、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.
56、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
57、圆的有关性质
58、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
59、直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)
60、由绝对值的定义可知:
61、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
62、有理数中仍然有:乘积是1的两个数互为倒数。
63、对角线相等的菱形;
64、直线外一点与直线上各点连接的所有线段中,垂线段最短。
65、同位角相等,两直线*行。
66、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
67、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。
68、推论2有一个角等于60°的等腰三角形是等边三角形。
69、多边形内角和定理n边形的内角的和等于(n-2)×180°。
70、推论夹在两条*行线间的*行线段相等。
71、*行四边形判定定理2两组对边分别相等的四边形是*行四边形。
72、矩形判定定理2对角线相等的*行四边形是矩形。
73、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
74、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
75、定理1关于中心对称的两个图形是全等的
76、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。
77、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形。
78、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半。
79、(2)合比性质:
80、(3)等比性质:
81、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
82、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。
83、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
84、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
85、①两圆外离d﹥R+r。
86、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
87、换元法
88、面积法
89、运算顺序:A、高级运算到低级运算;B、(同级运算)从“左”到“右”(如5÷×5);C、(有括号时)由“小”到“中”到“大”。
90、二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
91、加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
92、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)
93、两条*行线被第三条直线所截,内错角相等。(两直线*行,内错角相等)
94、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)
95、*移的性质
96、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)。
97、X轴:水*的数轴叫X轴或横轴。向右方向为正方向。
98、原点:两个数轴的交点叫做*面直角坐标系的原点。
99、点到轴及原点的距离:
100、不等式的解法:
——中考数学知识点 50句菁华
1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
2、反比例函数的图象在第一、三象限
3、cs30°=。
4、同弧所对的圆周角等于圆心角的一半。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
8、单项式与多项式
9、指数
10、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤
11、乘法法则:⑴单×单;⑵单×多;⑶多×多。
12、乘法公式:(正、逆用)
13、线段的中点及表示
14、互为余角、互为补角及表示方法
15、分类:
16、元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法
17、定义:a>b、a
18、一元一次不等式的解、解一元一次不等式
19、对应线段…;2.对应周长…;3.对应面积…。
20、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
21、画函数图象:⑴列表;⑵描点;⑶连线。
22、特殊角的三角函数值:
23、依据:①边的关系:
24、俯、仰角:2.方位角、象限角:3.坡度:
25、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
26、圆的定义(两种)
27、圆面积公式
28、弧长公式
29、圆柱、圆锥的侧面展开图及相关计算
30、作三角形的外接圆、内切圆
31、作半径
32、科学的听课方式
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)
34、规律方法总结:
35、k,b与函数图像所在象限:
36、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。
37、用待定系数法求二次函数的解析式
38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
39、见直径往往作直径上的'圆周角
40、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
41、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
42、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
43、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
44、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
45、梯形面积公式推导:旋转
46、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
47、重心到三角形3个顶点距离的*方和最小。
48、直角坐标系中,点A(3,0)在y轴上。
49、反比例函数的图象在第一、三象限。
50、cos60+ sin30= 1.
——数学的知识点总结 50句菁华
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、能正确数出数量是6-10的物体的个数。
3、会读写6—10的数字。
4、大于0的数是正数。
5、相遇问题:速度和×相遇时间=路程和
6、不同级:高低(先乘方和开方,再乘除,最后加减)
7、2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
8、对顶角相等。
9、有理数的减法运算
10、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
11、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的'角。
12、多边形内角和定理:n边形内角和等于(n-2)180°。
13、*面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
14、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
15、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。
16、一条弧所对的圆周角等于它所对的圆心角的一半。
17、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
18、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
19、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
20、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×
21、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放*,用一块*板水*地放在圆锥的顶点上面,竖直地量出*板和底面之间的距离。)
22、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
23、多项式:几个单项式的和叫多项式。
24、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
25、合并同类项步骤:
26、收集数据
27、描述数据
28、撰写调查报告
29、加减:
30、分数乘法的计算法则
31、整数的倒数
32、小数的倒数
33、性质:
34、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
35、直线与圆的位置关系:
36、有理数乘方的法则:
37、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
38、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
39、混合运算法则:先乘方,后乘除,最后加减。
40、任何数的绝对值是非负数。
41、倒数:乘积为1的两个数互为倒数,0没有倒数。
42、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得快的是(秒针),走得慢的是(时针)。
43、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
44、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
45、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
46、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
47、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
48、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
49、*行四边形的特点:
50、封闭图形一周的长度,就是它的周长。
——化学知识点总结 40句菁华
1、大部分酸及酸性氧化物能溶于水,(酸性氧化物+水→酸)大部分碱性氧化物不溶于水,能溶的有:氧化钡、氧化钾、氧化钙、氧化钠(碱性氧化物+水→碱)
2、天然存在最硬的物质是金刚石。
3、人体中含量最多的元素是氧。
4、日常生活中应用最广泛的金属是铁。
5、最早发现电子的是英国的汤姆生;
6、构成物质的三种微粒是:分子、原子、离子。
7、碳素钢可分为三种:高碳钢、中碳钢、低碳钢。
8、收集气体一般有三种方法:排水法、向上排空法、向下排空法。
9、co2可以灭火的原因有三个:不能燃烧、不能支持燃烧、密度比空气大。
10、与铜元素有关的三种蓝色:(1)硫酸铜晶体;(2)氢氧化铜沉淀;(3)硫酸铜溶液。
11、酒精灯的火焰分为三部分:外焰、内焰、焰心,其中外焰温度最高。
12、工业三废:废水、废渣、废气。
13、质量守恒解释的原子三不变:种类不改变、数目不增减、质量不变化
14、实验除杂原则:先除其它,后除水蒸气
15、一种元素可以组成混合物,但一定不可以组成化合物
16、勒夏特列原理(*衡移动原理):如果改变影响*衡的条件之一(如温度,压强,浓度),*衡向着能够减弱这种改变的方向移动。
17、K只与__温度(T)___有关,与反应物或生成物的浓度无关。
18、稀溶液中进行的反应,如有水参加,水的浓度不必写在*衡关系式中。
19、利用K值可判断反应的热效应
20、由长、短周期元素组成的族不一定是主族,还有0族。
21、对于多原子分子,键有极性,分子不一定有极性,如二氧化碳、甲烷等是非极性分子。
22、离子化合物不一定都是盐,如Mg3N2、金属碳化物(CaC2)等是离子化合物,但不是盐。
23、盐不一定都是离子化合物,如氯化铝、溴化铝等是共价化合物。
24、原子核内一般是中子数≥质子数,但普通氢原子核内是质子数≥中子数。
25、稀有气体原子的最外层一般都是8个电子,但He原子为2个电子。
26、一般离子的电子层结构为8电子的稳定结构,但也有2电子,18电子,8─18电子,18+2电子等稳定结构。”10电子“、”18电子“的微粒查阅笔记。
27、优先放电原理电解电解质水溶液时,阳极放电顺序为:活泼金属阳极(Au、Pt除外)>S2—>I—>Br—>Cl—>OH—>含氧酸根离子>F—。阴极:Ag+>Hg2+>Fe3+>Cu2+>H+>b2+>Sn2+>Fe2+>Zn2+>Al3+>Mg2+>Na+>Ca2+>K+。
28、电解精炼铜时,粗铜作阳极,精铜作阴极,硫酸铜溶液作电解液。
29、分子间力一定含在分子晶体内,其余晶体一定不存在分子间力(除石墨外)。
30、能发生银镜反应的有机物不一定是醛.可能是:
31、中和热概念:在稀溶液中,酸跟碱发生中和反应而生成1molH2O,这时的反应热叫中和热。
32、固体溶解度:在一定温度下,某固态物质在100克溶剂里达到饱和状态时所溶解的质量,就叫做这种物质在这种溶剂里的溶解度
33、酸:电离时生成的阳离子全部都是氢离子的化合物
34、潮解:某物质能吸收空气里的水分而变潮的现象
35、燃烧:可燃物跟氧气发生的一种发光发热的剧烈的氧化反应
36、特征:均一性、稳定性
37、化学*衡状态的特征
38、失电子难的原子获得电子的能力不一定都强,如碳,稀有气体等。
39、原子的最外电子层有2个电子的元素不一定是ⅡA族元素,如He、副族元素等。
40、金属 + 盐 → 另一金属 + 另一盐(条件:“前换后,盐可溶”) Fe + CuSO4 == Cu + FeSO4 (“湿法冶金”原理)