1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
4、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
5、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
6、利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
7、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.
8、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
9、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
10、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
11、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
13、计算直线与*面所成的角关键是作面的垂线找射影,或向量法(直线上向量与*面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与*面上以斜足为顶点的角的两边所成角相等斜线在*面上射影为角的*分线.
14、球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
15、导数与极值、导数与最值:
16、直线方程:高考时不单独命题,易和圆锥曲线结合命题
17、圆方程
18、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
19、数列的函数特征
20、复合函数的有关问题
21、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
22、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
23、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
24、圆柱体:
25、拟柱体
26、圆柱
27、记准均值、方差、标准差公式;
28、求概率时,正难则反(根据p1+p2+……+pn=1);
29、注意计数时利用列举、树图等基本方法;
30、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
31、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°
32、已知三边,或两边及其夹角用余弦定理
33、圆锥体:
34、写出点M的集合;
35、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
36、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
37、圆锥曲线:
38、导数、导数的应用(高考必考)
39、圆锥曲线
40、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分
——初中数学知识点总结 50句菁华
1、实数
2、整式与分式
3、一元二次方程根的情况
4、函数
5、全等三角形的对应边、对应角相等
6、勾股定理的逆定理
7、*行四边形判定定理1
8、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
9、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
10、点、线、面、体
11、圆的内部可以看作是圆心的距离小于半径的点的集合
12、线段的中点:
13、一元一次方程
14、解一元一次方程的一般步骤:
15、圆的外切四边形的两组对边的和相等
16、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
17、乘积的符号的确定
18、定义:有一组邻边相等的*行四边形叫做菱形
19、推论2经过切点且垂直于切线的直线必经过圆心
20、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
21、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
22、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
23、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)
24、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
25、人们通常用一条直线上的点表示数,这条直线叫做数轴。
26、两个负数,绝对值大的反而小。
27、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
28、有理数中仍然有:乘积是1的两个数互为倒数。
29、过两点有且只有一条直线。
30、同位角相等,两直线*行。
31、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
32、定理四边形的内角和等于360°。
33、四边形的外角和等于360°。
34、推论任意多边的外角和等于360°。
35、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
36、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
37、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
38、定理1关于中心对称的两个图形是全等的
39、等腰梯形的两条对角线相等。
40、(2)合比性质:
41、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。
42、圆是定点的距离等于定长的点的集合。
43、①两圆外离d﹥R+r。
44、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
47、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
48、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
49、*行公理推论:*行于同一直线的两条直线互相*行。如果b//a,c//a,那么b//c
50、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。
——数学知识点总结 40句菁华
1、面积、体积最(大)问题
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
3、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
4、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
5、1柱、锥、台、球的结构特征
6、2空间几何体的三视图和直观图
7、3空间几何体的表面积与体积
8、1.2空间中直线与直线之间的位置关系
9、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
10、2.1直线与*面*行的判定
11、2.2*面与*面*行的判定
12、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
13、二面角的记法:二面角α-l-β或α-AB-β
14、定理:垂直于同一个*面的两条直线*行。
15、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。
16、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直*分线
17、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
18、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
19、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
20、①直线L和⊙O相交d﹤r
21、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
22、如果两个圆相切,那么切点一定在连心线上
23、定理:把圆分成n(n≥3):
24、定理:
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26、弧长计算公式:L=n兀R/180
27、扇形面积公式:
28、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。
29、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
30、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
31、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
32、集合的表示方法:常用的有列举法、描述法和图文法
33、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.
34、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
35、求出每段的解析式.
36、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
37、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
38、an与Sn关系不清致误
39、不等式恒成立问题致误
40、忽视基本不等式应用条件致误
——高考数学知识点总结 40句菁华
1、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
2、求解与函数有关的问题易忽略定义域优先的原则。
3、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
5、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
6、反正弦、反余弦、反正切函数的取值范围分别是
7、你还记得某些特殊角的三角函数值吗?
8、.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量*行,但与任意向量都不垂直。
9、是向量与*行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
10、对不重合的两条直线
11、直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
12、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
13、利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
14、解析几何问题的求解中,*面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
15、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。
16、线面*行和面面*行的定义、判定和性质定理你掌握了吗?线线*行、线面*行、面面*行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种*行之间转换的条件是什么?
17、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。
18、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
19、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
20、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
21、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
22、函数的图象的*移,方程的*移以及点的*移公式易混:
23、形如的周期都是,但的周期为。
24、正弦定理时易忘比值还等于2R。
25、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)
26、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
27、求概率时,正难则反(根据p1+p2+……+pn=1);
28、函数的基本概念
29、如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).
30、函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.
31、求导
32、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
33、Venn图:
34、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
35、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
36、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
38、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
39、二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
40、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
——高中数学知识点总结 50句菁华
1、函数的极限:
2、在的导数。
3、函数在点处的导数的几何意义:
4、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
5、充要条件。
6、互为反函数的函数图象间的关系;
7、对数;
8、等差数列前n项和公式;
9、角的概念的推广;
10、两角和与差的正弦、余弦、正切;
11、函数的奇偶性;
12、函数的图象;
13、斜三角形解法举例。
14、向量;
15、实数与向量的积;
16、*面向量的坐标表示;
17、线段的定比分点;
18、不等式;
19、抛物线及其标准方程;
20、直线和*面*行的判定与性质;
21、直线和*面垂直的判定与性质;
22、三垂线定理及其逆定理;
23、异面直线的公垂线;
24、*面的法向量;
25、直线和*面所成的角;
26、向量在*面内的射影;
27、二面角及其*面角;
28、两个*面垂直的判定和性质;
29、多面体;
30、棱柱;
31、排列数公式;
32、函数图像(或方程曲线的对称性)
33、把答案盖住看例题
34、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。
35、利用导数研究多项式函数单调性的一般步骤
36、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
37、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
38、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
39、一条弧所对的圆周角等于它所对的圆心角的一半。
40、等比数列{an}中,若m+n=p+q,则
41、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
42、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
43、“包含”关系—子集注意:A?B有两种可能
44、构成函数的三要素:定义域、对应关系和值域
45、棱锥S—h—高V=Sh/3。
46、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
47、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。
48、区间的概念:设a,bR,且a
49、等比数列的有关公式
50、等比数列{an}的常用性质
——初一数学知识点归纳 40句菁华
1、单项式:;单独的一个数或一个字母也是单项式
2、单项式的次数:;
3、多项式的次数:;
4、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项
5、系数化为1
6、检验
7、二元一次方程组
8、列方程解应用题的一般步骤:
9、一些实际问题中的规律和等量关系:
10、对角线互相垂直的*行四边形是菱形。
11、性质:
12、正数(positionnumber):大于0的数叫做正数。
13、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
14、有理数加法法则
15、有理数乘法法则
16、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
17、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。
18、命题:判断一件事情的语句叫命题。
19、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
20、对应点:*移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
21、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
22、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。
23、多边形的内角:多边形相邻两边组成的角叫做它的内角。
24、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
25、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。
26、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
27、数轴:数轴是规定了原点、正方向、单位长度的一条直线.
28、2.1三角形的内角
29、3.1多边形
30、绝对值 |a|0.
31、倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数,a、b互为倒数。
32、立方根
33、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小;
34、无理数的比较大小:
35、加法
36、乘法
37、乘方与开方
38、有理数比大小:
39、3 有理数的加减法
40、1 多姿多彩的图形
——语文知识点总结 40句菁华
1、搭配不当;
2、关联词语使用不恰当;
3、对景物描写的作用的分析;
4、景物描写的作用:
5、赏析文中佳词美句与精彩段:应遵循“词不离句,句不离段,段不离篇”的原则。注意联系作者情感,联系文章主题,抓住修辞、关键词等进行赏析。
6、灯笼
7、反复:强调了……加强语气
8、引起下文,为下文作铺垫;
9、人物描写方法:动作(P54 第26-27段)、外貌、神态、心理
10、主题:爱国主义
11、单:单(shàn,姓)老师说,单(chán匈奴族首领)于只会骑马,不会骑单(dān)车。
12、喝:武松大喝(ha)一声:"快拿酒来!我要喝(hē)十二碗。"博得众食客一阵喝(ha)彩。
13、丧:他穿着丧(sāng)服,为丧(sāng)葬费发愁,神情沮丧(sàng)、垂头丧(sàng)气。
14、盛:盛(shang)老师盛(shang)情邀我去她家做客,并帮我盛(ch?ng)饭。
15、伯:我是她的大伯(b?),不是她的大伯(bǎi)子。
16、荷:荷(h?)花旁边站着一位荷(ha)枪实弹的战士。
17、涨:我说她涨(zhǎng)了工资,她就涨(zhàng)红着脸摇头否认。
18、炮:能用打红的炮(pào)筒炮(bāo)羊肉和炮(páo)制药材吗?
19、干:穿着干(gān)净的衣服干(gàn)脏活,真有点不协调。
20、巷:矿下的巷(hàng)道与北京四合院的小巷(xiàng)有点相似。
21、没:驾车违章,证件被交警没(m?)收了,他仍像没(m?i)事一样。
22、舍:我真舍(shě)不得离开住了这么多年的宿舍(sha)。
23、石:两石(dàn)石(shí)子不够装一卡车。
24、弹:这种弹(dān)弓弹(tán)力很强。
25、扒:他扒(bā)下皮鞋,就去追扒(pá)手。 67、散:我收集的材料散(sàn)失了,散(sǎn)文没法写了。 68、数:两岁能数(shǔ)数(shù)的小孩已数(shùo)见不鲜了。 69、参:人参(shēn)苗长得参(cēn)差不齐,还让人参(cān)观吗。 70、会:今天召开的会(kuài)计工作会(huì)议一会(huì)儿就要结束了。 71、簸:他用簸(b?)箕簸(bǒ)米。 72、吓:敌人的恐吓(ha)吓(xià)不倒他。 73、胖:肥胖(pàng)并不都是因为心宽体胖(pán),而是缺少锻炼。 74、耙:你用梨耙(bà)耙(bà)地,我用钉耙(pá)耙(pá)草。 75、伺:边伺(cì)候他边窥伺(sì)动静。 76、好:好(hào)逸恶劳、好(hào)为人师的做法都不好(hǎo)。 77、咳:咳(hāi)!你怎么又咳(k?)起来了? 78、处:教务处(chǔ)正在处(chù)理这个问题。 79、囤:大囤(dùn)、小囤(dùn),都囤(tún)满了粮食。 80、缝:这台缝(f?ng)纫机的台板有裂缝(fang)。 81、澄:澄(dang)清混水易,澄(ch?ng)清问题难。 82、扇:他拿着扇(shàn)子却扇(shān)不来风。 83、得:你得(děi必须)把心得(d?)体会写得(de)具体、详细些。 84、屏:他屏(bǐng)气凝神躲再屏(píng)风后面。 85、几:这几(jǐ)张茶几(jī)几(jī)乎都要散架了。 86、卷:考卷(juàn)被风卷(juǎn)起,飘落到了地上。 87、乐:教我们音乐(yùe)的老师姓乐(yùe),他乐(la)于助人。 88、了:他了(liào)望半天,对地形早已了(liǎo)如指掌了(le)。 89、吭: 小李一声不吭(kēng),小王却引吭(háng)高歌。 90、粘:胶水不粘(nián)了,书页粘(zhān)不紧。 91、畜:畜(xù)牧场里牲畜(chù)多。 92.称:称(chang同"秤")杆的名称(chēng)、实物要相称(chan) 93.弄:别在弄(l?ng)堂在玩弄(n?ng)小鸟。 94.俩:他兄弟俩(liǎ)耍猴的伎俩(liǎng)不过如此。 95.露:小杨刚一露(l?u)头,就暴露(lù)了目标。 96.重:老师很重(zh?ng)视这个问题,请重(ch?ng)说一遍。 97.率:他办事从不草率(shuài),效率(lǜ)一向很高。 98.空:有空(k?ng)闲就好好读书,尽量少说空(kōng)话。 99.泊:小船漂泊(b?)在湖泊(pō)里。 100.朝:我朝(zhāo)气蓬勃朝(cháo)前走。 101.膀:膀(páng)胱炎会使人膀(pāng)肿吗? 102.校:上校(xiào)到校(jiào)场找人校(jiào)对材料。 103.强:小强(qiáng)很倔强(jiàng),做事别勉强(qiǎng)他。 104.塞(sài)外并不闭塞(sa),塞(sāi)子塞(sāi)不住漏洞。 105.辟:随意诬陷人搞封建复辟(bì)可不行,得辟(pì)谣。 106.倒:瓶子倒(dǎo)了,水倒(dào)了出来。 107.都:大都(dū名词)市的人口都(dōu副词)很多。 108.匙:汤匙(chí)、钥匙(shi)都放在桌子上。
26、五种人物的描写方法:肖像(外貌)描写、语言描写、动作描写、心理描写、神态描写。
27、排比:增强语言气势,加强表达效果。叙事透辟,条分缕析;长于抒情。
28、设问:自问自答,提出问题,引发读者的注意、思考。
29、首句——统领全文、提纲挈领、引出下文,为后*铺垫、埋下伏笔;
30、点睛句——点明全文中心,统领全文;句子含义深刻,耐人寻味,读后能给人以启迪。
31、省略号的六种用法:①表内容省略 ②表语言断续 ③表因抢白话未说完 ④表心情矛盾 ⑤表思维跳跃 ⑥表思索正在进行
32、笔画增减造成的形近字。这类形近字笔画只有细微的差别,但读音迥异。如“大抵”的“抵”读“dǐ”, “扺掌而谈”的“扺”则读“zhǐ”。
33、偏旁不同造成的形近字。这类形近字往往读音相同或相近,更是考查的重点。如“峻”与“竣”都读“jùn”,而“慨”和“概”分别读“kǎi”和“ɡài”。
34、注意内容的统一性,仿句要顺应上下文的语言环境,做到文脉相通。
35、注意结构上的一致性,仿句要与例句的短语类型、单句成分、复句关系以及句式一致,字数近量相同,至少相近。
36、注意语意上的协调性,仿句要与例句前后语意连贯,语体色彩、感情色彩和风格协调一致。
37、修改式仿写题
38、续写式仿写题
39、敕勒歌
40、赏析