1、有理数:①整数→正整数,0,负整数;
2、过两点有且只有一条直线
3、同角或等角的余角相等——余角=90-角度。
4、直线外一点与直线上各点连接的所有线段中,垂线段最短
5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
6、同位角相等,两直线*行
7、同旁内角互补,两直线*行
8、两直线*行,内错角相等
9、推论
10、角边角公理(
11、等腰三角形的判定定理
12、直角三角形斜边上的中线等于斜边上的一半
13、逆定理
14、*行四边形判定定理2
15、矩形判定定理2
16、菱形面积=对角线乘积的一半,即S=(a×b)÷2
17、等腰梯形的两条对角线相等
18、对角线相等的梯形是等腰梯形
19、三角形中位线定理
20、梯形中位线定理
21、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
22、圆是以圆心为对称中心的中心对称图形
23、切线的判定定理
24、正n边形的每个内角都等于(n-2)×180°/n
25、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
26、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
27、两组对边*行的四边形是*行四边形。
28、判定:
29、定义:有一个角是直角的*行四边形叫做矩形
30、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等
31、对称性:等腰梯形是轴对称图形
32、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
33、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
34、公式与性质
35、多边形外角和定理:
36、垂径定理:垂直于弦的直径*分这条弦并且*分弦所对的两条弧
37、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
38、推论1经过圆心且垂直于切线的直线必经过切点
39、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
40、定理:一条弧所对的圆周角等于它所对的圆心角的一半
——初中数学知识点总结 100句菁华
1、整式与分式
2、解一元二次方程的步骤:
3、韦达定理
4、如果两条直线都和第三条直线*行,这两条直线也互相*行
5、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
6、定理2
7、直角三角形斜边上的中线等于斜边上的一半
8、勾股定理
9、勾股定理的逆定理
10、四边形的外角和等于360°
11、*行四边形判定定理1
12、*行四边形判定定理3
13、矩形判定定理2
14、菱形面积=对角线乘积的一半,即S=(a×b)÷2
15、正方形性质定理1
16、三角形中位线定理
17、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
18、混合运算法则:先乘方,后乘除,最后加减。
19、性质定理1
20、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
21、性质定理3
22、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
23、圆是定点的距离等于定长的点的集合
24、圆的外部可以看作是圆心的距离大于半径的点的集合
25、同圆或等圆的半径相等
26、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
28、添括号法则
29、垂径定理
30、圆是以圆心为对称中心的中心对称图形
31、解一元一次方程的一般步骤:
32、普查与抽样调查
33、切割线定理
34、有关数轴
35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
36、倒数:乘积为1的两个数互为倒数,0没有倒数。
37、内公切线长=d-(R-r)
38、三角形的分类
39、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
40、三角形内角和定理:三角形三个内角的和等于180°
41、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
42、判定:
43、性质:矩形的四个角都是直角,矩形的对角线相等
44、s菱=争6(n、6分别为对角线长)
45、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
46、2整式的加减
47、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
48、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
49、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。
50、多边形对角线的条数:
51、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
52、定理:相交两圆的连心线垂直*分两圆的公共弦
53、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
54、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
55、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.
56、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
57、圆的有关性质
58、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
59、直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)
60、由绝对值的定义可知:
61、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
62、有理数中仍然有:乘积是1的两个数互为倒数。
63、对角线相等的菱形;
64、直线外一点与直线上各点连接的所有线段中,垂线段最短。
65、同位角相等,两直线*行。
66、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
67、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。
68、推论2有一个角等于60°的等腰三角形是等边三角形。
69、多边形内角和定理n边形的内角的和等于(n-2)×180°。
70、推论夹在两条*行线间的*行线段相等。
71、*行四边形判定定理2两组对边分别相等的四边形是*行四边形。
72、矩形判定定理2对角线相等的*行四边形是矩形。
73、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
74、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
75、定理1关于中心对称的两个图形是全等的
76、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。
77、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形。
78、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半。
79、(2)合比性质:
80、(3)等比性质:
81、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
82、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。
83、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
84、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
85、①两圆外离d﹥R+r。
86、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
87、换元法
88、面积法
89、运算顺序:A、高级运算到低级运算;B、(同级运算)从“左”到“右”(如5÷×5);C、(有括号时)由“小”到“中”到“大”。
90、二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
91、加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
92、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)
93、两条*行线被第三条直线所截,内错角相等。(两直线*行,内错角相等)
94、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)
95、*移的性质
96、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)。
97、X轴:水*的数轴叫X轴或横轴。向右方向为正方向。
98、原点:两个数轴的交点叫做*面直角坐标系的原点。
99、点到轴及原点的距离:
100、不等式的解法:
——初中数学知识点总结 50句菁华
1、实数
2、整式与分式
3、一元二次方程根的情况
4、函数
5、全等三角形的对应边、对应角相等
6、勾股定理的逆定理
7、*行四边形判定定理1
8、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
9、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
10、点、线、面、体
11、圆的内部可以看作是圆心的距离小于半径的点的集合
12、线段的中点:
13、一元一次方程
14、解一元一次方程的一般步骤:
15、圆的外切四边形的两组对边的和相等
16、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
17、乘积的符号的确定
18、定义:有一组邻边相等的*行四边形叫做菱形
19、推论2经过切点且垂直于切线的直线必经过圆心
20、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
21、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
22、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
23、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)
24、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
25、人们通常用一条直线上的点表示数,这条直线叫做数轴。
26、两个负数,绝对值大的反而小。
27、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
28、有理数中仍然有:乘积是1的两个数互为倒数。
29、过两点有且只有一条直线。
30、同位角相等,两直线*行。
31、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
32、定理四边形的内角和等于360°。
33、四边形的外角和等于360°。
34、推论任意多边的外角和等于360°。
35、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
36、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
37、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
38、定理1关于中心对称的两个图形是全等的
39、等腰梯形的两条对角线相等。
40、(2)合比性质:
41、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。
42、圆是定点的距离等于定长的点的集合。
43、①两圆外离d﹥R+r。
44、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
47、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
48、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
49、*行公理推论:*行于同一直线的两条直线互相*行。如果b//a,c//a,那么b//c
50、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。
——初中数学重要知识点总结 40句菁华
1、不等式与不等式组
2、3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
3、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
4、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。
5、列方程解应用题的常用公式:
6、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
7、函数
8、点,线,面
9、直线外一点与直线上各点连接的所有线段中,垂线段最短
10、同位角相等,两直线*行
11、两直线*行,同旁内角互补
12、定理
13、推论1
14、推论2
15、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;
16、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
17、*行四边形性质定理2
18、矩形性质定理1
19、菱形判定定理1
20、菱形判定定理2
21、正方形性质定理1
22、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
23、等腰梯形的两条对角线相等
24、等腰梯形判定定理
25、三角形中位线定理
26、梯形中位线定理
27、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
28、圆是定点的距离等于定长的点的集合
29、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
30、弦切角定理
31、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
32、不在同一直线上的三点确定一个圆。
33、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
34、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
35、推论1经过圆心且垂直于切线的直线必经过切点
36、圆的外切四边形的两组对边的和相等外角等于内对角
37、定理相交两圆的连心线垂直*分两圆的公共弦
38、正三角形面积√3a/4a表示边长
39、内公切线长=d-(R-r)外公切线长=d-(R+r)
40、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
——中考数学知识点 60句菁华
1、直角坐标系中,点A(1,1)在第一象限。
2、函数=4x+1是正比例函数。
3、cs30°=。
4、同圆或等圆的半径相等。
5、长度相等的两条弧是等弧。
6、经过圆心*分弦的直径垂直于弦。
7、直线与圆有唯一公共点时,叫做直线与圆相切。
8、数的分类及概念数系表:
9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
10、整式和分式
11、指数
12、分式的加、减、乘、除、乘方、开方法则
13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤
14、总体:考察对象的全体。
15、个体:总体中每一个考察对象。
16、众数:一组数据中,出现次数最多的数据。
17、角(*角、周角、直角、锐角、钝角)
18、互为余角、互为补角及表示方法
19、公理、定理
20、定义(包括内、外角)
21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
22、一般性质(角)
23、定义及一般形式:
24、根的判别式:
25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。
26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
27、一元一次不等式组:
28、应用举例(略)
29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。
30、表示方法:⑴解析法;⑵列表法;⑶图象法。
31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:
32、特殊角的三角函数值:
33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
34、"等对等"定理及其推论
35、五种位置关系及判定与性质:(重点:相切)
36、圆的内接、外切多边形(三角形、四边形)
37、*分已知弧
38、科学的听课方式
39、求与y轴*行线段的中点:|y1—y2|/2
40、抛物线是轴对称图形。对称轴为直线
41、一次项系数b和二次项系数a共同决定对称轴的位置。
42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。
43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。
46、5×1.8 就是求 1.5 的 1.8 倍是多少。
47、求近似数的方法一般有三种:(P10)
48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
49、解方程原理:天**衡。
50、所有的方程都是等式,但等式不一定都是方程。
51、*行四边形面积公式推导:剪拼、*移
52、梯形面积公式推导:旋转
53、身份证码: 18 位
54、重心和三角形3个顶点组成的3个三角形面积相等。
55、直角坐标系中,点A(3,0)在y轴上。
56、当x=2时,函数y=的值为1.
57、当x=3时,函数y=的值为1.
58、函数y=-8x是一次函数。
59、tan45= 1.
60、直角三角形的三条高交点在一个顶点上。
——初中数学全册知识点 50句菁华
1、实数
2、代数式
3、一元二次方程根的情况
4、同角或等角的余角相等——余角=90-角度。
5、两直线*行,内错角相等
6、两直线*行,同旁内角互补
7、定理
8、推论
9、推论3
10、角边角公理(
11、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
12、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
13、定理2
14、角的*分线是到角的两边距离相等的所有点的集合
15、等腰三角形的性质定理
16、直角三角形斜边上的中线等于斜边上的一半
17、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
18、定理3
19、四边形的外角和等于360°
20、*行四边形性质定理1
21、*行线等分线段定理
22、三角形中位线定理
23、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
24、*行于三角形的一边,并且和其他两边相交的直线,
25、性质定理3
26、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
27、切线的性质定理
28、切线长定理
29、弦切角定理
30、如果两个圆相切,那么切点一定在连心线上
31、内公切线长=d-(R-r)
32、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
33、高线、中线、角*分线的意义和做法
34、三角形内角和定理:三角形三个内角的和等于180°
35、三角形外角的性质
36、定义:有一个角是直角的*行四边形叫做矩形
37、性质:矩形的四个角都是直角,矩形的对角线相等
38、对称性:矩形是轴对称图形也是中心对称图形。
39、公式与性质
40、多边形外角和定理:
41、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
42、推论1经过圆心且垂直于切线的直线必经过切点
43、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角
44、①两圆外离d>R+r
45、相反数:
46、有理数加法法则:
47、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
48、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
49、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
50、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。
——初中物理知识点总结 50句菁华
1、固体分为晶体和非晶体。
2、沸腾:在一定温度下,在液体表面和内部同时发生的剧烈的汽化现象。
3、液体沸腾的条件:温度达到沸点,且能继续从外界吸热。
4、沸腾的现象:从底部产生大量气泡,上升,变大到液面破裂,放出气泡中的水蒸气。
5、液化的两种方式:降低温度和压缩体积。
6、升华:物质由固态直接变成气态的过程。升华吸热。
7、误差:是指测量值与被测物体的真实值之间的差异。误差在任何测量中都存在,误差的产生跟测量的人和工具有关,只能减小不可避免。通常采用多次测量取*均值的方法来减小误差。而错误是应该且可以避免的。
8、质量的测量工具:台秤、天*、戥子、地中衡等
9、密度:在物理学中,把某种物质单位体积的质量叫做这种物质的密度。
10、参照物:要描述一个物体是运动的还是静止的,要选定一个标准物体做参照物,这个选中的标准物体叫参照物。
11、投影仪的镜头是凸透镜;
12、动滑轮
13、功
14、功率的概念:功率是表示物体做功快慢的物理量。
15、动能
16、重力势能
17、动能和势能的转化
18、带了电(荷):摩擦过的物体有了吸引物体的轻小物体的性质,我们就说物体带了电。
19、电荷量:定义:电荷的多少叫电量。
20、电流的三种效应。
21、导体和绝缘体之间并没有绝对的界限,在一定条件下可相互转化。一定条件下,绝缘体也可变为导体。原因是:加热使绝缘体中的一些电子挣脱原子的束缚变为自由电荷。
22、选择不同的参照物来观察同一个物体结论可能不同。同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的相对性。
23、特点:机械运动是宇宙中最普遍的现象。
24、比较物体运动快慢的方法:⑴时间相同路程长则运动快⑵路程相同时间短则运动快⑶比较单位时间内通过的路程。
25、力的三要素:力的大小、方向、和作用点。
26、牛顿第一定律:
27、二力*衡条件:二力作用在同一物体上、大小相等、方向相反、两个力在一条直线上。
28、漫反射和镜面反射一样遵循光的反射定律。
29、*面镜在生活中使用不当会造成光污染。
30、电流的方向:从电源正极流向负极。
31、电压表的使用规则:①电压表要并联在电路中;②电流要从"+"接线柱流入,从"—"接线柱流出;③被测电压不要超过电压表的量程;
32、熟记的电压值:①1节干电池的电压1。5伏;②1节铅蓄电池电压是2伏;③家庭照明电压为220伏;④安全电压是:不高于36伏(我国规定安全电压额定值的等级为42、36、24、12、6伏)⑤工业电压380伏。
33、电阻(r):表示导体对电流的阻碍作用。国际单位:欧姆(ω);
34、力的作用效果:力可以改变物体的形状,力可以改变物体的运动状态。
35、重力大小的叫重量,物体所受的重力跟质量成正比。
36、二力*衡条件:二力作用在同一物体上、大小相等、方向相反、两个力在一条直线上
37、摩擦力分类:静摩擦力、滑动摩擦力、滚动摩擦力。
38、滑动摩擦力:①测量原理:二力*衡条件
39、液体压强的计算公式:p=ρgh
40、连通器:
41、大气压的特点:空气内部向各个方向都有压强;大气压随高度增加而减小。
42、轮船是采用空心的方法来增大浮力的。轮船的排水量:轮船满载时排开水的质量。轮船从河里驶入海里,由于水的密度变大,轮船浸入水的体积会变小,所以会上浮一些,但是受到的浮力不变(始终等于轮船所受的重力)。
43、漂浮悬浮法:F浮=G物
44、功的原理:使用机械时,人们所做的功,都不会少于不用机械时所做的功,也就是使用任何机械都不省功。
45、单位:主单位:W,常用单位kW,它们间的换算关系是:1kW=103W
46、推导公式:P=Fυ;公式中P表示功率,F表示作用在物体上的力,υ表示物体在力F的方向上运动的速度。使用该公式解题时,功率P的单位:瓦(W),力F的单位:牛(N),速度υ的单位:米/秒(m/s)。
47、动能①定义:物体由于运动而具有的能,叫做动能。
48、应用:三种杠杆:
49、有用功总小于总功,所以机械效率总小于1。通常用百分数表示。某滑轮机械效率为60%表示有用功占总功的60%。
50、提高机械效率的方法:减小机械自重、减小机件间的摩擦。
——高中数学知识点总结 50句菁华
1、函数的极限:
2、在的导数。
3、函数在点处的导数的几何意义:
4、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
5、充要条件。
6、互为反函数的函数图象间的关系;
7、对数;
8、等差数列前n项和公式;
9、角的概念的推广;
10、两角和与差的正弦、余弦、正切;
11、函数的奇偶性;
12、函数的图象;
13、斜三角形解法举例。
14、向量;
15、实数与向量的积;
16、*面向量的坐标表示;
17、线段的定比分点;
18、不等式;
19、抛物线及其标准方程;
20、直线和*面*行的判定与性质;
21、直线和*面垂直的判定与性质;
22、三垂线定理及其逆定理;
23、异面直线的公垂线;
24、*面的法向量;
25、直线和*面所成的角;
26、向量在*面内的射影;
27、二面角及其*面角;
28、两个*面垂直的判定和性质;
29、多面体;
30、棱柱;
31、排列数公式;
32、函数图像(或方程曲线的对称性)
33、把答案盖住看例题
34、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。
35、利用导数研究多项式函数单调性的一般步骤
36、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
37、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
38、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
39、一条弧所对的圆周角等于它所对的圆心角的一半。
40、等比数列{an}中,若m+n=p+q,则
41、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
42、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
43、“包含”关系—子集注意:A?B有两种可能
44、构成函数的三要素:定义域、对应关系和值域
45、棱锥S—h—高V=Sh/3。
46、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
47、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。
48、区间的概念:设a,bR,且a
49、等比数列的有关公式
50、等比数列{an}的常用性质
——七年级下册数学知识点总结归纳 40句菁华
1、相反数
2、*方根
3、乘法
4、单项式的数字因数叫做单项式的系数。
5、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
6、几个单项式的和叫做多项式。
7、多项式中不含字母的项叫做常数项。
8、整式不一定是单项式。
9、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
10、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
11、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
12、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
13、积是一个多项式,其项数与多项式的项数相同。
14、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
15、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
16、*行线的性质:两直线*行。(线的*行
17、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
18、会判轴对称图形,会根据画对称图形,(或在方格中画)
19、常见的轴对称图形有:
20、垂直三要素:垂直关系,垂直记号,垂足。
21、垂线段最短。
22、命题:判断一件事情的语句叫命题。
23、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
24、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
25、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
26、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)
27、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
28、钝角三角形有两条高在外部。
29、三个角对应相等的两个三角形不一定全等。
30、两边及一角对应相等的两个三角形不一定全等。
31、一条斜边和一直角边对应相等的两个三角形全等。
32、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
33、全等图形
34、两个能够重合的图形称为全等图形。
35、全等三角形
36、若Y随X的变化而变化,则X是自变量Y是因变量。
37、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间
38、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
39、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;
40、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
——物理知识点总结 40句菁华
1、光在均匀介质中是沿直线传播的。大气层是不均匀的 初中政治,当光从大气层外射到地面时,光线发了了弯折
2、光线:表示光传播方向的直线,即沿光的传播路线画一直线,并在直线上画上箭头表示光的传播方向(光线是假想的,实际并不存在)
3、*衡物体的临界问题:
4、电路:把电源、用电器、开关、导线连接起来组成的电流的路径。
5、电流的方向:从电源正极流向负极。
6、电源是把其他形式的能转化为电能。如干电池是把化学能转化为电能。发电机则由机械能转化为电能。
7、电压表的使用规则:①电压表要并联在电路中;②电流要从"+"接线柱流入,从"—"接线柱流出;③被测电压不要超过电压表的量程;
8、欧姆定律:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。
9、解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
10、力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。
11、N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。
12、明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。
13、电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。
14、闭合电路部分路,外电路和内电路,遵循定律属欧姆。
15、几个力*衡,则一个力是与其它力合力*衡的力。
16、两个力的合力:F(max)—F(min)≤F合≤F(max)+F(min)。 三个大小相等的共面共点力*衡,力之间的夹角为120°。
17、轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
18、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
19、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。
20、匀变速直线运动中的*均速度
21、自由落体
22、沿粗糙斜面下滑的物体 a=g(sinα—μcosα)
23、第一个是等时圆
24、投影仪的镜头是凸透镜;
25、力的单位:国际单位制中力的单位是牛顿简称牛,用N 表示。
26、力的三要素:力的大小、方向、和作用点。
27、力的表示法: 力的示意图:用一根带箭头的线段把力的大小、方向、作用点表示出来,如果没有大小,可不表示,在同一个图中,力越大,线段应越长
28、滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN
29、摩擦力可以是阻力,也可以是动力。
30、静摩擦有无的判断:概念法(相对运动趋势);二力*衡法;牛顿运动定律法;假设法(假设没有静摩擦)。
31、压强的计算公式及单位:公式:p=F/s,p表示压强,F表示压力,S表示受力面积压力的单位是N,面积的单位是m2,压强的单位是N/m2,叫做帕斯卡,记作Pa。1Pa=1N/m2。(帕斯卡单位很小,一粒*放的西瓜子对水*面的压强大约为20Pa)
32、增大压强与减小压强的方法:
33、是指上部开口,底部连通的容器。
34、连通器的原理:
35、连通器中各容器液面相*的条件是:(1)连通器中只有一种液体,(2)液体静止。
36、像液体一样,在空气的内部向各个方向也有压强,这个压强叫做大气压强,简称大气压。大气压具有液体压强的特点。
37、活塞式抽水机和离心式水泵:都是利用大气压把水从低处抽到高处的。
38、浮力:浸在液体中的物体受到液体向上的托力叫做浮力。
39、浸在液体中的物体受到的浮力大小与物体浸在液体中的体积和液体的密度有关。
40、流体流动时,流速大的地方压强小,流速小的地方压强大。
——生物必修二知识点总结 40句菁华
1、学习生物学知识要重在理解,勤于思考。
2、什么是种间关系?
3、什么是互利共生?
4、什么是群落的垂直结构?
5、互利共栖:两种生物生活在一起,互相依赖,彼此有利,即使分开,都能很好生活的现象。
6、减数第一次_减数第二次_间通常没有间期,染色体不再复制。
7、大多数真核细胞通常有一个细胞核,但哺乳动物成熟的红细胞无细胞核,有的细胞有多个细胞核。
8、反射的结构基础:反射弧
9、大脑的高级功能:言语区: S区(不能讲话)、W(不能写字)、H(不能听懂话)、V(不能看懂文字)
10、激素调节的实例
11、分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
12、孟德尔对分离现象的原因提出如下假说:生物的性状是由遗传因子决定的;体细胞中遗传因子是成对存在的;生物体再形成生殖细胞—配子时,成对的遗传因子彼此分离,分别进入不同的配子中;*时,雌雄配子的结合是随机的。
13、基因分离的实质是:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数形成配子的过程中,等位基因会随着同源染色体的分开而分离,分别进入两个配子中,独立的随着配子遗传给后代。
14、基因的自由组合定律的实质是:位于非同源染色体上的非等位基因的分离和自由组合是互不干扰的;在减数过程中,在同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
15、DNA分子双螺旋结构的主要特点:DNA分子是由两条链组成的,这两条链按反向*行方式盘旋成双螺旋结构;DNA分子中的脱氧核苷酸和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧;两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律。
16、基因通过控制酶的合成来控制代谢过程,进而控制生物的性状。
17、功能特性:选择透过性举例:(腌制糖醋蒜,红墨水测定种子发芽率,判断种子胚、胚乳是否成活)
18、种群密度的测量方法:样方法(植物和运动能力较弱的动物)、标志重捕法(运动能力强的动物)
19、在内环境中发生和不发生的生理过程
20、组织水肿及其产生原因分析
21、染色体:在细胞分裂期,细胞核内长丝状的染色质高度螺旋化,缩短变粗,就形成了光学显微镜下可以看见的染色体。
22、非特异性免疫和特异性免疫
23、下图是初次免疫反应和二次免疫反应过程中抗体浓度变化和患病程度曲线图,据图回答相关问题
24、反射:是神经系统的基本活动方式。是指在中枢神经系统参与下,动物体或人体对内外环境变化作出的规律性应答。
25、1859年达尔文进化论
26、生物体具应激性,因而能适应周围环境。
27、生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。
28、活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。
29、线粒体是活细胞进行有氧呼吸的主要场所。
30、核糖体是细胞内合成为蛋白质的场所。
31、构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系.协调一致的,一个细胞是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。
32、细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地*均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。
33、细胞分化是一种持久性的变化,它发生在生物体的整个生命进程中,但在胚胎时期达到限度。
34、酶是活细胞产生的一类具有生物催化作用的有机物
35、神经调节的基本方式:反射
36、大脑的高级功能:除了对外界的感知及控制机体的反射活动外,还具有语言.学习.记忆.和思维等方面的高级功能。
37、血糖*衡的调节
38、抗原:能够引起机体产生特异性免疫反应的物质(如:细菌.病毒.人体中坏死.变异的细胞.组织)
39、生态环境问题是全球性的问题。
40、生物多样性包括:物种多样性、基因多样性、生态系统多样性