1、过三点的圆
2、垂于直径半直线必为圆的的切线
3、圆切线垂的直过切于点半径
4、圆的轴对称性
5、圆周角定理
6、切线的判定定理
7、切线长
8、圆和圆位置关系的性质与判定
9、正多边形的中心
10、正多边形的半径
11、正多边形的轴对称性
12、正多边形的中心对称性
13、弧长公式
14、圆锥的侧面积
15、圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。
16、圆有无数条半径,有无数条直径。
17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
18、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
19、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
20、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
21、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
22、圆是定点的距离等于定长的点的集合
23、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
24、切线的性质定理圆的切线垂直于经过切点的半径
25、推论1经过圆心且垂直于切线的直线必经过切点
26、推论2经过切点且垂直于切线的直线必经过圆心
27、圆的外切四边形的两组对边的和相等外角等于内对角
28、①两圆外离d>R+r
29、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
30、定理一条弧所对的圆周角等于它所对的圆心角的一半
31、解决疑难。这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
32、课外学习。课外学习是课内学习的补充和继续,包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展学生的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
33、到角两边距离相等的点的轨迹是:角的*分线;
34、圆心确定圆的位置,半径确定圆的大小。
35、圆的周长公式:C=πd或C=2πr
36、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=πr×r=πr2
37、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2
38、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。
39、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。
40、直径所在的直线是圆的对称轴。
——中考数学知识点 60句菁华
1、直角坐标系中,点A(1,1)在第一象限。
2、函数=4x+1是正比例函数。
3、cs30°=。
4、同圆或等圆的半径相等。
5、长度相等的两条弧是等弧。
6、经过圆心*分弦的直径垂直于弦。
7、直线与圆有唯一公共点时,叫做直线与圆相切。
8、数的分类及概念数系表:
9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
10、整式和分式
11、指数
12、分式的加、减、乘、除、乘方、开方法则
13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤
14、总体:考察对象的全体。
15、个体:总体中每一个考察对象。
16、众数:一组数据中,出现次数最多的数据。
17、角(*角、周角、直角、锐角、钝角)
18、互为余角、互为补角及表示方法
19、公理、定理
20、定义(包括内、外角)
21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
22、一般性质(角)
23、定义及一般形式:
24、根的判别式:
25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。
26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
27、一元一次不等式组:
28、应用举例(略)
29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。
30、表示方法:⑴解析法;⑵列表法;⑶图象法。
31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:
32、特殊角的三角函数值:
33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
34、"等对等"定理及其推论
35、五种位置关系及判定与性质:(重点:相切)
36、圆的内接、外切多边形(三角形、四边形)
37、*分已知弧
38、科学的听课方式
39、求与y轴*行线段的中点:|y1—y2|/2
40、抛物线是轴对称图形。对称轴为直线
41、一次项系数b和二次项系数a共同决定对称轴的位置。
42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。
43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。
46、5×1.8 就是求 1.5 的 1.8 倍是多少。
47、求近似数的方法一般有三种:(P10)
48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
49、解方程原理:天**衡。
50、所有的方程都是等式,但等式不一定都是方程。
51、*行四边形面积公式推导:剪拼、*移
52、梯形面积公式推导:旋转
53、身份证码: 18 位
54、重心和三角形3个顶点组成的3个三角形面积相等。
55、直角坐标系中,点A(3,0)在y轴上。
56、当x=2时,函数y=的值为1.
57、当x=3时,函数y=的值为1.
58、函数y=-8x是一次函数。
59、tan45= 1.
60、直角三角形的三条高交点在一个顶点上。
——中考数学知识点 50句菁华
1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
2、反比例函数的图象在第一、三象限
3、cs30°=。
4、同弧所对的圆周角等于圆心角的一半。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
8、单项式与多项式
9、指数
10、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤
11、乘法法则:⑴单×单;⑵单×多;⑶多×多。
12、乘法公式:(正、逆用)
13、线段的中点及表示
14、互为余角、互为补角及表示方法
15、分类:
16、元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法
17、定义:a>b、a
18、一元一次不等式的解、解一元一次不等式
19、对应线段…;2.对应周长…;3.对应面积…。
20、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
21、画函数图象:⑴列表;⑵描点;⑶连线。
22、特殊角的三角函数值:
23、依据:①边的关系:
24、俯、仰角:2.方位角、象限角:3.坡度:
25、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
26、圆的定义(两种)
27、圆面积公式
28、弧长公式
29、圆柱、圆锥的侧面展开图及相关计算
30、作三角形的外接圆、内切圆
31、作半径
32、科学的听课方式
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)
34、规律方法总结:
35、k,b与函数图像所在象限:
36、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。
37、用待定系数法求二次函数的解析式
38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
39、见直径往往作直径上的'圆周角
40、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
41、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
42、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
43、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
44、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
45、梯形面积公式推导:旋转
46、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
47、重心到三角形3个顶点距离的*方和最小。
48、直角坐标系中,点A(3,0)在y轴上。
49、反比例函数的图象在第一、三象限。
50、cos60+ sin30= 1.
——数学圆知识点总结 40句菁华
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、同圆或等圆的半径相等
4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
5、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
6、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
7、推论:经过切点且垂直于切线的直线必经过圆心
8、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
10、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
11、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
12、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
13、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
14、圆的有关性质
15、不在同一直线上的三点确定一个圆。
16、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、圆的外切四边形的两组对边的和相等外角等于内对角
20、正n边形的每个内角都等于n-2×180°/n
21、正三角形面积√3a/4 a表示边长
22、内公切线长= d-R-r外公切线长= d-R+r
23、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
24、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径
25、弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr
26、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。
27、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
28、圆的周长C=2d
29、圆锥侧面积S=rl
30、圆的标准方程
31、圆的一般方程
32、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
33、圆的周长C=2πr=πd
34、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
35、①直线L和⊙O相交 d
36、推论2 经过切点且垂直于切线的直线必经过圆心
37、圆的外切四边形的两组对边的和相等 外角等于内对角
38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
39、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
40、弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
——小学数学知识点 50句菁华
1、加减混合运算:
2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,如70比25多多少?19比46少多少?
3、多几的问题。未知数比谁多几,就用谁加上几。如:比29多17的数是多少?(29+17=46)
4、哪一位数不够减,从前位退1,在本位加10再减。
5、从个位起,用一位数依次乘多位数中的每一位数;
6、除数除到哪一位,就把商写在那一位上面;
7、然后把两次乘得的数加起来。
8、除到被除数的哪一位就在哪一位上面写商;
9、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
10、从高位起,一级一级往下读;
11、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
13、弄清题意,找出未知数,并用X表示;
14、分数加减法:
15、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
16、四边形的特点:有四条直的边,有四个角。
17、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。
18、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8
19、5个6相加写作乘法算式是( )或( )。
20、数字写在字母的前面,应省略乘。[5a]、[16xy]等。
21、若系数是带分数,要化成假分数。
22、比较两个图形面积的大小,要用统一的面积单位来测量。
23、边长1分米的正方形面积是1*方分米。
24、边长1米的正方形面积是1*方米。
25、边长100米的正方形面积是1公顷(10000*方米)。
26、测量土地的面积时,常常要用到更大的面积单位:公顷、*方千米。
27、长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长
28、汽车在笔直的公路上行驶,车身的运动是( )现象
29、教室门的打开和关闭,门的运动是( )现象。
30、下面( )的运动是*移。
31、可以分布计算,也可以列综合算式。
32、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)
33、练习十三 第4题 (重点)
34、有余数的除法的意义:在*均分一些物体时,有时会有剩余。
35、笔算除法的计算方法:
36、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
37、10个一千是一万。
38、估算
39、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。
40、利率
41、因数×因数=积积÷一个因数=另一个因数
42、长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。
43、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。
44、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39
45、数级分类:
46、数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。
47、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。
48、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
49、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。
50、描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。
——高等数学知识点总结 50句菁华
1、了解函数的奇偶性、单调性、周期性、和有界性。
2、理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
3、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
4、熟练运用微分中值定理证明简单命题。
5、了解函数图形的作图步骤。了解方程求近似解的两种方法:二分法、切线法。
6、会求有理函数、三角函数、有理式和简单无理函数的不定积分
7、掌握不定积分的换元积分法。
8、理解定积分的概念,掌握定积分的性质及定积分中值定理。
9、掌握反常积分的运算。
10、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
11、掌握一阶线性微分方程的解法,会解伯努利方程.
12、掌握向量的线性运算,掌握单位向量、方向角与方向余弦,掌握向量的坐标表达式掌握用坐标表达式进行向量运算方法。
13、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。
14、理解曲面方程的概念,了解二次曲面方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线*行于坐标轴的柱面方程。
15、了解空间曲线的概念,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标*面上的投影,并会求其方程。
16、列方程解应用题的常用公式:
17、代数式
18、一元二次方程的解法
19、韦达定理
20、一元二次方程根的情况
21、点,线,面
22、直线外一点与直线上各点连接的所有线段中,垂线段最短
23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
24、同旁内角互补,两直线*行
25、两直线*行,同位角相等
26、推论
27、三角形内角和定理:
28、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
29、定理1
30、等腰三角形的性质定理
31、逆定理
32、多边形内角和定理
33、矩形性质定理2
34、菱形判定定理2
35、等腰梯形的两条对角线相等
36、*行线等分线段定理
37、同圆或等圆的半径相等
38、到已知角的两边距离相等的点的轨迹,是这个角的*分线
39、弦切角定理
40、正n边形的面积Sn=pn*rn/2
41、扇形面积公式:S扇形=n兀R^2/360=LR/2
42、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
43、绝对值:
44、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
45、有理数乘法的运算律:
46、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
47、混合运算法则:先乘方,后乘除,最后加减。
48、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
49、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
50、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0
——初中化学中考必考知识点归纳 40句菁华
1、组成化合物种类最多的元素是碳。
2、日常生活中应用最广泛的金属是铁。
3、最早得出空气是由N2和O2组成的是法国的拉瓦锡。
4、常用于炼铁的铁矿石有三种:
5、酒精灯的火焰分为三部分:外焰、内焰、焰心,其中外焰温度最高。
6、工业三废:废水、废渣、废气。
7、溶液配制的三步骤:计算、称量(量取)、溶解。
8、构成物质的三种粒子:分子、原子、离子。
9、镁在空气中燃烧:2Mg+O2=点燃=2MgO
10、铁在氧气中燃烧:3Fe+2O2=点燃=Fe3O4
11、磷在氧气中燃烧:4P+5O2=点燃=2P2O5
12、铜在空气中加热:2Cu+O2=△=2CuO
13、氢气在氧气中燃烧:2H2+O2=点燃=2H2O
14、二氧化碳通过灼热的碳层:CO2+C=高温=2CO
15、蜡烛一吹即灭是因为冷空气使蜡烛温度下降至其着火点以下,用扇扇炉火越来越旺是因为提供了足够的氧气,增加的煤与氧气接触的面积。
16、西气东输的气体是天然气,主要成分是甲烷,煤矿“瓦斯”爆炸的主要气体也是甲烷,其原因是矿井中通风不良,使甲烷与空气混合而达到爆炸极限经点燃发生爆炸,所以为防止煤矿爆炸要常常保持通风,严禁烟火。
17、淡黄色固体:硫磺
18、红褐色固体:氢氧化铁
19、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液
20、紫红色溶液:高锰酸钾溶液
21、紫色溶液:石蕊溶液
22、造成水污染的三种原因:
23、质量守恒定律的三个不改变:原子种类不变,原子数目不变,原子质量不变。
24、排放到空气中的.三种气体污染物:一氧化碳、氮的氧化物,硫的氧化物。
25、燃烧发白光的物质:镁条,木炭,蜡烛。
26、具有可燃性的三种气体是:氢气(理想),一氧化碳(有毒),甲烷(常用)。
27、浓硫酸的三个特性:吸水性,脱水性,强氧化性。
28、玻璃棒在粗盐提纯中的三个作用:搅拌、引流、转移。
29、浓配稀的三个步骤:计算,量取,溶解。
30、三种遇水放热的物质:浓硫酸,氢氧化钠,生石灰。
31、过滤两次滤液仍浑浊的原因:滤纸破损,仪器不干净,液面高于滤纸边缘。
32、煤气:一氧化碳(co)
33、天然气:甲烷(ch4)
34、生铁/钢:(fe)
35、木炭/焦炭/炭黑/活性炭:(c)
36、氯化钠(nacl):食盐
37、氢氧化钠(naoh):火碱,烧碱,苛性钠
38、氧化钙(cao):生石灰
39、氢氯酸(hcl):盐酸
40、乙醇(c2h5oh):酒精
——高三数学知识点总结 40句菁华
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
4、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
5、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
6、利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
7、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.
8、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
9、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
10、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
11、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
13、计算直线与*面所成的角关键是作面的垂线找射影,或向量法(直线上向量与*面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与*面上以斜足为顶点的角的两边所成角相等斜线在*面上射影为角的*分线.
14、球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
15、导数与极值、导数与最值:
16、直线方程:高考时不单独命题,易和圆锥曲线结合命题
17、圆方程
18、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
19、数列的函数特征
20、复合函数的有关问题
21、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
22、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
23、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
24、圆柱体:
25、拟柱体
26、圆柱
27、记准均值、方差、标准差公式;
28、求概率时,正难则反(根据p1+p2+……+pn=1);
29、注意计数时利用列举、树图等基本方法;
30、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
31、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°
32、已知三边,或两边及其夹角用余弦定理
33、圆锥体:
34、写出点M的集合;
35、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
36、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
37、圆锥曲线:
38、导数、导数的应用(高考必考)
39、圆锥曲线
40、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分