1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
2、用分数的基本性质,把分数分母扩大或者缩小分母是100的分数,再写成百分数形式,这种方法简便,但有局限性。
3、用表格方式解决有局限性,数目必须小,例:
4、1 34
5、3 32
6、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
7、除以一个不等于0的数,等于乘这个数的倒数
8、比例的基本性质是在比例里两内项积等于两外项积。
9、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
10、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
11、被除数÷除数= 被除数/除数
12、因为零不能作除数,所以分数的分母不能为零。
13、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
14、乘法分配律:
15、整数加法计算法则:
16、圆的面积=圆周率×半径×半径
17、被除数与商的变化规律:
18、错的原因是什么?
19、当符合什么条件时,错误才能变成正确?
20、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
21、分数乘整数的计算方法
22、倒数的意义
23、分数除法的计算方法
24、20是25的几分之几? 20÷25=4/5
25、工程问题
26、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
27、1的倒数是它本身,因为1×1=1。
28、求一个数的几分之几是多少?(用乘法)
29、什么是速度?
30、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
31、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
32、圆的半径由6分米增加到9分米,圆的面积增加了45*方分米。(__)
33、这个月哪项出最多?支出了多少元?
34、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
35、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。
36、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
37、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
38、假分数与带分数的互化:
39、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。
40、用字母表示数的意义和作用
41、圆是*面内封闭曲线围成的*面图形。
42、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
43、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
44、百分数和分数的区别和联系:
45、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
46、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。
47、3.14(__)π
48、圆沿一条直线滚动时,圆心在一条直线上运动。(__)
49、两个圆的大小一样,它们的半径一定相等。(__)
50、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?
——六年级数学上册知识点 60句菁华
1、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
2、两个小数的比,向右移动小数点的位置。也是先化成整数比。
3、圆的周长:C =2πr =πd
4、用表格方式解决有局限性,数目必须小,例:
5、1 34
6、3 32
7、用代数方法解(一般规律)
8、分数乘法的意义:一个数×分数
9、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
10、整数加法计算法则:
11、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
12、分数除法应用题:
13、被除数÷除数=被除数×除数的倒数。
14、混合运算用梯等式计算,等号写在第一个数字的左下角。
15、错在哪里?
16、找单位“1”的方法
17、求倒数的方法
18、1的倒数是1,0没有倒数。
19、已知一个数的几分之几是多少,求这个数的问题
20、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
21、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
22、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
23、能用数对表示物体的位置,正确区分列和行的顺序;
24、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
25、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
26、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
27、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。
28、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。
29、这个月哪项出最多?支出了多少元?
30、购买衣物的支出比文化教育支出少百分之几?
31、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
32、常见的百分率的计算方法:
33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。
34、真分数和假分数:
35、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。
36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
37、、长方形
38、、长方体
39、三角形
40、梯形
41、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
42、已知单位“1”的量用乘法。
43、分数应用题基本数量关系(把分数看成比)
44、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
45、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
46、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
47、半圆周长=圆周长一半+直径= πr+d
48、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
49、小数、分数、百分数之间的互化
50、掌握求倒数的方法;
51、理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;
52、分数除法:分数除法是分数乘法的逆运算。
53、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
54、比和比例的意义:
55、“数与形相结合”的思想
56、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。
57、半个圆的周长就是圆周长的一半。(__)
58、当周长相等时,面积的是(__)
59、画一个直径为5厘米的圆,圆规两脚之间的距离是(__)
60、在边长为12米的正方形中剪直径为3厘米的圆,你最多能剪多少个?
——六年级上册数学知识点 50句菁华
1、整数加法计算法则:
2、小数乘法法则:
3、小数乘法意义:
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知A比B多(或少)几分之几,求A的解题方法
6、物*置的相对性
7、理解比例的意义和基本性质,会解比例。
8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
9、在*面图上标出物*置的方法:
10、绘制路线图的方法:
11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径
16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
17、求一个数比另一个数多(或少)几分之几(或百分之几)?
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、根据比的基本性质,可以把比化成最简单的整数比。
20、被减数-减数=差被减数-差=减数差+减数=被减数
21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
24、假分数与带分数的互化:
25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、已知一个数的百分之几是多少,求这个数?
28、浓度问题
29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
34、被除数 相当于分子,除数相当于分母。
35、减法的性质:
36、分数除法应用题:
37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
39、根据比的基本性质,可以把比化成最简单的整数比。
40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
42、常用统计图的优点:
43、使学生能在方格纸上用数对确定位置;
44、使学生理解倒数的意义,掌握求倒数的方法;
45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
50、“数与形相结合”的思想
——六年级数学下册知识点 40句菁华
1、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
2、能借助数轴初步学会比较正数、0和负数之间的大小。
3、像-16、-500、-3/8、-0.4…这样的数叫做负数。-3/8读作负八分之三。16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。+6.3读作正六点三。0既不是正数,也不是负数。
4、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
5、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
6、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是*面,侧面是曲面。
7、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。
8、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
9、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放*,用一块*板水*地放在圆锥的顶点上面,竖直地量出*板和底面之间的距离)
10、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
11、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
12、正比例和反比例:
13、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
14、通过“抽屉原理”的灵活应用感受数学的魅力。
15、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
16、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
17、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
18、圆柱是由两个底面和一个侧面三部分组成的。
19、(1)圆柱两个底面之间的距离叫做圆柱的高。
20、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch
21、容积的计算方法和体积的计算方法相同,只是计算容积的数据要从里面测量。
22、在以直角三角形的直角边为轴旋转而成的两个圆锥中,以较短直角边为轴旋转而成的圆锥的体积比较大。
23、百分数。
24、空间与图形。
25、统计。
26、两组对边分别*行的四边形叫做*行四边形;*行四边形有无数条高,*行四边形不是轴对称图形。
27、只有一组对边*行的四边形叫梯形。
28、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
29、圆柱的特征:
30、圆柱的侧面展开图:
31、圆锥的特征:
32、圆锥的相关计算公式:
33、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
34、比的意义(1)两个数相除又叫做两个数的比
35、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
36、用比例解决问题:
37、常见的数量关系式:(成正比例或成反比例)
38、2 1
39、1 2
40、摸2个同色球计算方法。
——五年级上册数学知识点 60句菁华
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、能正确进行乘号的简写,略写;小数乘法的计算法则;
6、构建初步的空间想象力;
7、多边形面积的计算。
8、计算小数加法先把小数点对齐,再把相同数位上的数相加
9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
10、用计算器来验算
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、构建空间想象力:
13、①含有未知数的等式称为方程。
14、*行四边形面积=底×高字母公式:s=ah
15、分割法;
16、画垂线时用实线画。
17、*行四边形面积=底×高(s*=ah)
18、三角形高=面积×2÷底 h = 2 S ÷ a
19、运算定律和性质:
20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
21、(关于“大约)应用题:
22、圆柱的侧面积=底面圆的周长×高:S=ch。
23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。
24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
25、相邻两个质量单位进率是1000。
26、圆的面积=圆周率×半径×半径:s=πr2。
27、*行四边形的面积=底×高S=ah
28、正方体的表面积=棱长×棱长×6公式:S=6a2
29、镜子内外的左右方向是相反的。
30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
32、5×1.8 就是求 1.5 的 1.8 倍是多少。
33、所有的方程都是等式,但等式不一定都是方程。
34、方程的检验过程:方程左边=……
35、身份证码:18位
36、长方形和正方形是特殊的*行四边形。
37、解方程。
38、求一个数的近似数:
39、分母:表示*均分的份数。分子:表示取出的份数。
40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。
42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
43、含有未知数的等式是方程。
44、求方程中未知数的过程,叫做解方程。
45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
46、1992所有的质因数的和是( 88 )。
47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。
49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。
50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
55、有些事件的发生是确定的,有些是不确定的。 可能
56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)
57、正方形里最大的圆。两者联系:边长=直径
58、长方形里最大的圆。两者联系:宽=直径
59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——小学数学三年级知识点 50句菁华
1、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
2、相邻两个质量单位进率是1000。
3、认识整千数(记忆:10个一千是一万)
4、被减数是三位数的连续退位减法的运算步骤:
5、有余数除法的含义:通过*均分一些物体,有时有剩余,就出现了余数。
6、余数与除数的关系:
7、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
8、4米的1/5和1米的4/5同样长。
9、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
10、真分数小于1。假分数大于或等于1。真分数总是小于假分数。
11、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
12、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。
13、把分数化成小数的方法:用分数的分子除以分母。
14、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……
15、分数大小比较的应用题:工作效率大的快,工作时间小的快。
16、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
17、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。
18、只要是*均分就用(除法)计算。
19、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)
20、笔算除法:
21、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。
22、闰年:2月有29天的月份是*年,*年有365天。
23、整千、整百、整十数除以一位数的口算方法。
24、会判断商是几位数。
25、乘除法的估算:4舍5入法。
26、1厘米中间的每一小格的长度是1毫米。
27、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
28、把一些白色围棋子放在书包里,从中任意摸出一个,()是白棋子。
29、从8个红色的的玻璃球和2个*的玻璃球中任意摸出一个,找到()色的玻璃球可能性更大些。
30、计算300×2,可以算()个百乘2得()个百,也就是()。
31、14×2=()。
32、学校买来20个羽毛球,每个羽毛球2元,一共花了多少钱?
33、正方形、长方形数属于特殊的*行四边形。
34、正方形还是特殊的长方形。
35、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
36、上完一节课需要40(),再加()分就是一小时。
37、钟面上最短的针是()针,较长的针是()针。转动最快的针是()针,它走一小格的时间是()秒。
38、小明做一道数学口算题大约需要3()。
39、分针跑一圈就是1小时。()
40、把一块月饼*均分成2份,每份是这块月饼的一半,也就是它的()分之(),写作(—)。
41、58这个分数中,()是分子,()是分母,读作()。
42、一本书有21页,*均每天看这本书的3页,占全书的()
43、修路队要修一条公路,已经修好了这条公路的712,还剩几分之几未修好?
44、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
45、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
46、公式。(每两个相邻的时间单位之间的进率是60)
47、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
48、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
49、四边形的特点:有四条直的边,有四个角。
50、*行四边形的特点:
——七年级数学上册寒假作业答案 40句菁华
1、解:根据内错角相等,两直线*行,
2、解:根据两直线*行,内错角相等,
3、B;2、D;3、B;4、D;5、D
4、(1)2;(2)54;(3)13;(4)-9
5、B2、D3、B4、D5、A6、D7、A8、D9、D10、C
6、0,1-1,0,1
7、(1)1(2)-(3)13(4)22、原式=当a=2时,原式=10
8、9±9
9、0
10、±a
11、≥1
12、2实偶次1正数1负
13、21,23,25;18、35m;19、3n+1;325或361.
14、解:(1);(2)
15、(1);(2)x=-1
16、(1)m=6(2)x=-4
17、(1)55.5万人(2)6%(3)6000人
18、两两点确定一条直线
19、(1)x(2)b(3)a(4)10(5)x(6)y
20、80133m+3(14)(y-x)m+10
21、C2.B3.A4.A5.B6.①,②,④
22、49.后面、上面、左面10.(1)10(2)略11.33
23、C2.B.3.A.4.B5.B.6.①③7.180m8.?3
24、计算:
25、(1)28元(2)星期二,29元(3)亏了1115.5元
26、B2.D3.C4..B5.D6.C7.C8.A9.A10..B11.黄;12.1;
27、8.;14.20;15.7n+8,50;16.7×[3-(-3)?7];17.(1)-0.7;(2)
28、50,1+3+5+7+……+(2n+1)=n2
29、数与字母所有字母的指数和数字字母02、几个单项式的和次数的项的次数
30、不变相乘(a)=a(1)10mnmn9(2)(212)3(3)612(4)x10(5)-a14
31、(1)(6)x1412648xyz(2)?a3nb3m(3)4na2nb3n427
32、4或210、0.5X+3)80%=16.8
33、a=-212、互为倒数13、2.51乘(10的5次方)14、015、不大于4
34、可能性不大。
35、A;2.C;3.B;4.D;C;6.∠α=∠β,内错角相等,两直线*行;
36、b;a
37、1;ab
38、4、9或8、9或9、10
39、D
40、[3,4]=12
——三年级上册数学知识点总结 40句菁华
1、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。
2、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、比较大小的方法:
4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
6、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
7、三位数乘一位数:积有可能是三位数,也有可能是四位数。
8、(关于“大约)应用题:
9、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)
10、被减数是三位数的连续退位减法的运算步骤:
11、乘法交换律:a×b=b×a交换因数的位置积不变。
12、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍
13、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。
14、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
15、封闭图形一周的长度,就是它的周长。
16、连减的简便计算:
17、加减混合的简便计算:
18、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)
19、减法的验算方法:
20、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
21、两个三位数相加的和:可能是三位数,也有可能是四位数。
22、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。
23、加法公式:加数+加数=和
24、长度单位的关系式有:(每两个相邻的`长度单位之间的进率是10 )
25、单位换算:小到大除,大到小乘。
26、分数大小比较的应用题:工作效率大的快,工作时间小的快。
27、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】
28、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )
29、关于0的一些规定:
30、乘除法的估算:4舍5入法。
31、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
32、认识整千数(记忆:10个一千是一万)
33、读数和写数(读数时写汉字写数时写*数字)
34、要认真审题,弄清题目要求后再做。
35、“公顷”(测量菜地面积、果园面积)和“*方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;
36、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。
37、用乘法和除法两步计算解决实际问题的方法:
38、小数加法、减法的简便计算:
39、常用的土地面积单位有(公顷)和(*方千米)。
40、在乘法里,乘数也叫做因数。
——六年级上册数学复习资料 40句菁华
1、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
6、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
7、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;
8、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
9、能用数对表示物体的位置,正确区分列和行的顺序;
10、圆的周长和圆周率的意义,圆周长公式的推导过程;
11、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
12、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
13、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
14、分数乘整数:数形结合、转化化归
15、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
16、圆的定义:圆是由曲线围成的一种*面图形。
17、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.
18、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
19、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。
20、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母π(pai)表示。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
21、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。(R=r+环的宽度.)
22、常见半径与直径的周长和面积的结果。
23、68113.04
24、96153.86
25、52.2539.427.065
26、512.25721.9838.465
27、520.35928.2663.585
28、556.251547.1176.625
29、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的'增减变化情况。
30、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。(要在统计图上写出百分率)
31、每幅图的圆点总数都可以看作是两个相同的数相乘的积,这些算式还可以用*方数的形式来表示。1+3=221+3+5=321+3+5+7=42得出:从1起连续奇数的和等于奇数个数的*方。
32、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
33、圆周率实验:
34、圆的周长公式
35、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
36、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
37、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
38、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
39、百分数化成分数:
40、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。