1、分数:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
2、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
3、互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和9。
4、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。
5、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。
6、会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;
7、205≈2.2 (保留一位小数)
8、205≈2.21 (保留两位小数)
9、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体*均分成若干份,这样的一份或几份都可以用分数来表示。
10、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
11、分数和小数的互化
12、3=3/10 0.03=3/100 0.003=3/1000
13、方程的意义
14、列方程解应用题的一般步骤
15、一本书100页,*均每页有a行,每行有b个字,那么,这本书一共有( )个字。
16、根据运算定律写出:
17、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )
18、一块长方形试验田有4.2公顷,它的长是420米,它的宽是( )米。
19、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。( )
20、某校六年级有两个班,上学期级数学*均成绩是85分。已知六(1)班40人,*均成绩为87.1分;六(2)班有42人,*均成绩是多少分?
21、15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?
22、乘法交换律:axb=bxa
23、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。
24、计量很短的时间,常用秒。秒是比分更小的时间单位。
25、动手操作,思维拓展
26、计算小数乘法末尾对齐,按整数乘法法则进行计算。
27、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
28、长方形的周长=(长+宽)×2 C=(a+b)×2
29、长方形的面积=长×宽S=ab
30、正方形的面积=边长×边长S=a.a= a
31、直径=半径×2 d=2r半径=直径÷2 r= d÷2
32、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
33、长方体的体积=长×宽×高公式:V = abh
34、对*移和旋转现象的初步认识:
35、分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
36、分数化成小数的方法:
37、异分母分数要先通分才能够相加、减。
38、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000 。
39、梯形面积公式推导:
40、被减数-减数=差被减数-差=减数差+减数=被减数
——五年级上册数学知识点 60句菁华
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、能正确进行乘号的简写,略写;小数乘法的计算法则;
6、构建初步的空间想象力;
7、多边形面积的计算。
8、计算小数加法先把小数点对齐,再把相同数位上的数相加
9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
10、用计算器来验算
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、构建空间想象力:
13、①含有未知数的等式称为方程。
14、*行四边形面积=底×高字母公式:s=ah
15、分割法;
16、画垂线时用实线画。
17、*行四边形面积=底×高(s*=ah)
18、三角形高=面积×2÷底 h = 2 S ÷ a
19、运算定律和性质:
20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
21、(关于“大约)应用题:
22、圆柱的侧面积=底面圆的周长×高:S=ch。
23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。
24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
25、相邻两个质量单位进率是1000。
26、圆的面积=圆周率×半径×半径:s=πr2。
27、*行四边形的面积=底×高S=ah
28、正方体的表面积=棱长×棱长×6公式:S=6a2
29、镜子内外的左右方向是相反的。
30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
32、5×1.8 就是求 1.5 的 1.8 倍是多少。
33、所有的方程都是等式,但等式不一定都是方程。
34、方程的检验过程:方程左边=……
35、身份证码:18位
36、长方形和正方形是特殊的*行四边形。
37、解方程。
38、求一个数的近似数:
39、分母:表示*均分的份数。分子:表示取出的份数。
40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。
42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
43、含有未知数的等式是方程。
44、求方程中未知数的过程,叫做解方程。
45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
46、1992所有的质因数的和是( 88 )。
47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。
49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。
50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
55、有些事件的发生是确定的,有些是不确定的。 可能
56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)
57、正方形里最大的圆。两者联系:边长=直径
58、长方形里最大的圆。两者联系:宽=直径
59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——五年级上册数学知识点 50句菁华
1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
4、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、把因数的位置交换相乘
7、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
8、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
9、用字母表示计算公式。
10、综合计算法
11、*行四边形面积=底×高 S = a h
12、*行四边形底=面积÷高 a = S ÷ h
13、梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
14、1*方米=100*方分米=10000*方厘米
15、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
16、求近似数的方法一般有三种:(P10)
17、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、长方形的周长=(长+宽)×2:C=(a+b)×2。
20、长方形的面积=长×宽:S=ab。
21、三角形的面积=底×高÷2 S=ah÷2
22、长方体的体积=长×宽×高公式:V = abh
23、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
24、5×1.8 就是求 1.5 的 1.8 倍是多少。
25、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
26、方程的检验过程:方程左边=……
27、等底等高的*行四边形面积相等;
28、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
29、正方形的特点:有4个直角,4条边相等。
30、*行四边形的特点:
31、可以表示起点
32、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
33、读数和写数(读数时写汉字写数时写*数字)
34、公式
35、真分数:分子小于分母的分数叫做真分数。真分数小于1。
36、互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
37、自然数按是否是2的倍数来分:奇数偶数
38、自然数按因数的个数来分:质数、合数、1.
39、表示相等关系的式子叫做等式。
40、含有未知数的等式是方程。
41、列方程解应用题的思路:
42、1992所有的质因数的和是( 88 )。
43、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。
44、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。
45、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。
46、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
47、长方形里最大的圆。两者联系:宽=直径
48、车轮滚动一周前进的路程就是车轮的周长。
49、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
50、常用的*方数:112=121 122=144 132=169 142=196 152=225
——五年级数学知识点 30句菁华
1、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。
2、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。
3、由曲线围成的图形(圆)不能够密铺。
4、无限小数:小数部分的位数是无限的小数,叫做无限小数。
5、*行四边形面积公式推导:剪拼、*移
6、梯形面积公式推导:旋转
7、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
8、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
9、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
10、积与因数的关系:
11、一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)几倍。
12、小数除以整数:
13、小数除以小数:
14、5的倍数特征:个位上是0、5的数都是5的倍数
15、在*行四边形里画一个最大的三角形,这个三角形的面积等于这个*行四边形面积的一半。
16、三角形和*行四边形面积相等,高相等,则三角形的底是*行四边形的2倍,*行四边形的底是三角形的一半。
17、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
18、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的`自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
19、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
20、5□中最大填()时这个数能被3整除,这个数的约数有()
21、已知a=2×2×3×5b=2×5×7,a和b公有的质因数有(),它们的最大公约数是()
22、一个非0自然数不是质数,就是合数。()
23、大于2的偶数都是合数。()
24、8÷[14-(9.85+1.07)](2.44-1.8)÷0.4×20
25、一段长方体钢材,长1.6米,横截面是边长4厘米的正方形。每立方厘米刚重7.8克,这块方钢重多少?
26、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深12厘米。把一块石头浸入水中后,水面升到16厘米,求石块的体积。
27、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
28、在实际应用中,小数除法所
29、3232的循环节是32.
30、事件发生的机会(或概率)有大小。
——六年级上册数学知识点 50句菁华
1、整数加法计算法则:
2、小数乘法法则:
3、小数乘法意义:
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知A比B多(或少)几分之几,求A的解题方法
6、物*置的相对性
7、理解比例的意义和基本性质,会解比例。
8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
9、在*面图上标出物*置的方法:
10、绘制路线图的方法:
11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径
16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
17、求一个数比另一个数多(或少)几分之几(或百分之几)?
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、根据比的基本性质,可以把比化成最简单的整数比。
20、被减数-减数=差被减数-差=减数差+减数=被减数
21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
24、假分数与带分数的互化:
25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、已知一个数的百分之几是多少,求这个数?
28、浓度问题
29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
34、被除数 相当于分子,除数相当于分母。
35、减法的性质:
36、分数除法应用题:
37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
39、根据比的基本性质,可以把比化成最简单的整数比。
40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
42、常用统计图的优点:
43、使学生能在方格纸上用数对确定位置;
44、使学生理解倒数的意义,掌握求倒数的方法;
45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
50、“数与形相结合”的思想
——数学七年级上册知识点 50句菁华
1、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
2、几何图形
3、生活中的立体图形
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
6、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
7、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
8、去括号法则
9、角的度量
10、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
11、方程的解
12、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
13、解一元一次方程的一般步骤:
14、扇形统计图
15、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p
16、正数:大于0的数。
17、负数:小于0的数。
18、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
19、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
20、乘法分配律:a(b+c)=ab+ac
21、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
22、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
23、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
24、同号两数相加,取相同的符号,并把绝对值相加。
25、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
26、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
27、在直线上任取一个点表示数0,这个点叫做原点(origin).
28、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
29、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
30、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
31、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.
32、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
33、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
34、有理数除法法则
35、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;
36、所有的有理数都可以用分数表示,π不是有理数。
37、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
38、在有理数的加法中,
39、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
40、次数:单项式中所有的字母的指数和
41、几个单项式的和叫做多项式。
42、列方程是解决问题的重要方法,利用方程可以解出未知数。
43、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
44、先看笔记后做作业。
45、利用数轴表示两数大小
46、可用字母表示为
47、有理数的乘法法则
48、倒数
49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
——六年级上册数学知识点总结 40句菁华
1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
4、圆周率实验:
5、区分周长的一半和半圆的周长:
6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
7、取近似数的方法:
8、无限小数:小数部分的位数是无限的小数,叫做无限小数。
9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。
15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。
19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。
22、分数的分类
23、分子分母是互质数的分数叫做最简分数。
24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
25、圆的面积=圆周率×半径×半径
26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
29、分数除法:分数除法是分数乘法的逆运算。
30、你还能得到哪些信息?
31、文化教育支出了多少元?购买衣物支出了多少元?
32、因为零不能作除数,所以分数的分母不能为零。
33、被除数 相当于分子,除数相当于分母。
34、整数加法计算法则:
35、同分母分数加减法计算方法:
36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
37、用字母表示数的意义和作用
38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
39、、长方体
40、圆锥体
——五年级数学质量分析 30句菁华
1、降低学习起点,减少练习的坡度。为了使后进生听得懂、学得会,对难度较大的知识内容适当降低起点,做到从熟到生,由易而难,逐步深入,讲解例题减少每步间的推理难度,尽量照顾到基础差,反应慢的后进生,练习题要精心设计。
2、举一反三,讲清概念。后进生对概念常常是知其然而不知其所以然,只能片面领会,不能抓住实质,在讲概念时要注意引导学生分析关键字眼,多角度,通过有效的练习沟通新旧知识间的联系与区别,举出反例加以深化。
3、适当增加体量,试卷知识覆盖面广,难易适中。
4、能正确规范地绘制条形统计图,并能根据统计图回答问题,具有较强的获取信息和数据分析能力。
5、具有较强的图形识别能力和一般空间观念,大部分学生能正确地解决生活中有关表面积、体积的实际问题。
6、一些学生综合运用概念的能力不强,错误较多。如选择题第5题,判断题第1题,填空题第2题学生做的就不好。
7、有的学生对四则混合运算中的有关试题能否简便计算把握不准,将不能简便的题目也用了简便算法而造成错误。
8、解决实际问题部分依然存在审题不仔细,计算不细心,数量关系不清楚的老问题。如第2题不理解“截面”的含义、解题时没有统一单位名称就列式计算;第3题空间想象力差,不理解数量关系列式错误;第5题不知从何入手解题,仅靠凑数字,无法正确解题。
9、基本口算的训练要进一步加强,注重四则混合运算题的审题、计算方法的单项训练,尤其是简便计算试题的特征要使所有学生掌握,坚持不懈的抓好计算过关工作。
10、加强中下等学生的补差工作,适当补充拓宽知识点的深化题。
11、注重基础知识
12、试题结构均衡
13、贴近生活实际
14、基础知识部分。学生答的还算理想,这是我们在*时的教学中对基础知识抓的实,对学生应当掌握的知识训练的比较到位。大多数学生对本册书前半部分知识掌握得很牢固,但仍有部分学生出现问题。
15、“解决问题”的最后一题,对条件问题的分析综合能力不够,解决问题的策略训练有待提高。应用题是日常生活在数学中的反映,既能发展学生数学思维能力,也是培养学生应用意识和创新能力的重要途径,从卷面看:⑴学生解决问题的分析、综合能力有待提高;⑵学生解题的策略性还不够。这说明在*时的教学中,还要着重让学生学会找题中的数量关系。
16、没有形成良好的学习习惯。表现在稍复杂的数据和文字都会对一些能力较弱或习惯较差的学生造成一定的影响。如,卷面上有不少单纯的计算错误、抄错数据、漏小数点、漏做题等低级错误。
17、精用教材,因人而教,做好各层次的课前、课中、课后的辅导。
18、激发学生学习兴趣,注重培养学生良好的学习习惯。
19、创设生动具体的情境。根据五年级学生的年龄和思维特点,充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动,激发学生的学习兴趣,让学生在生动具体的'情境中理解和认识数学知识。
20、关注学生中的弱势群体。做好后进生的补差工作,要从“以人为本”的角度出发,与学生多沟通,消除他们的心理障碍;帮助他们形成良好的学习习惯。加强方法指导;严格要求学生,从最基础的知识抓起;根据学生差异,进行分层教学;努力使学生在原有基础上得到最大限度的发展。
21、部分学生粗心大意,没有养成认真审题的习惯,导致有些简单的问题也会出错。
22、加强对学生数学思维能力的培养。以创新精神和实践能力为重点,教师课堂教学和作业设计要加强对学生的开放性逻辑思维能力的训练,加强学生数学实践操作活动,培养学生思维的开阔性、灵活性。
23、发挥集体备课的作用。备好课是上好课的前提。发挥教师群体力量进行备课,进而弥补自身个体钻研教材能力的不足,共同分析、研究和探讨教材,准确把握教材。
24、加强学习习惯和策略的培养。五年级教材的思维要求高,灵活性强,仅用大量机械重复的训练是不能解决问题的。今后要精选、精编灵活多变的针对性练习、发展性练习、综合性练习,有意识地对学生进行收集信息、处理信息、分析问题、解决问题的方法和策略指导,培养学生良好的学习方法和习惯。如:独立思考的习惯,认真读题、仔细审题的习惯等等。
25、注重学生数学基础知识与基本技能的考察。基础知识与基本技能掌握较好的学生最后能合格是能够实现的。
26、考查知识点的综合运用。试卷中对知识点的考查不是呆板的罗列,很多时候都是知识点的有机结合,体现对教师*时教学中要综合运用所学知识解答简单实际问题的要求。
27、填空题是基础题,书上原句较多。学生都做的较好。
28、客观原因
29、注重基础,注重落实。训练要到位。
30、注重变式训练。提高学生解题能力。