七年级上册数学知识点 30句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学

1、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

2、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.

4、大于0的数叫做正数(positive number)。

5、整数和分数统称为有理数(rational number)。

6、有理数减法法则

7、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

9、有理数除法法则

10、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

11、把多项式中的同类项合并成一项,叫做合并同类项。

12、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

13、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

14、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。

15、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间

16、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

17、几何体简称为体(solid)。

18、角∠(angle)也是一种基本的几何图形。

19、几何图形的投影问题

20、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;

21、线段、射线、直线的表示方法

22、正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

23、在有理数的加法中,

24、运算顺序:先算乘方,再算乘除,最后算加减。如果是同级运算,则按从左到右的运算顺序计算。如果有括号,先算小括号,再算中括号,最后算大括号。

25、不含字母的项叫做常数项。

26、单项式和多项式统称为整式。

27、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。

28、方程是等式,等式不一定是方程。

29、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

30、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。


七年级上册数学知识点 30句菁华扩展阅读


七年级上册数学知识点 30句菁华(扩展1)

——七年级下册数学知识点 40句菁华

1、都是数字与字母的乘积的代数式叫做单项式。

2、单独一个数或一个字母也是单项式。

3、只含有字母因式的单项式的系数是1或―1。

4、单项式的系数包括它前面的符号。

5、单项式的系数是1或―1时,通常省略数字“1”。

6、多项式中的每一个单项式叫做多项式的项。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

8、单项式和多项式统称为整式。

9、单项式或多项式都是整式。

10、几个整式相加减的一般步骤:

11、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

12、底数相同的幂叫做同底数幂。

13、此法则也可以逆用,即:am+n = am﹒an。

14、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

15、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。

16、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

17、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

18、系数相乘时,注意符号。

19、单项式乘以单项式的结果仍是单项式。

20、积是一个多项式,其项数与多项式的项数相同。

21、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

22、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的*方之差。

23、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

24、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

25、互为余角和互为补角和

26、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

27、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

28、(1)等腰三角形:对称轴,性质

29、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线

30、事件的分类:,会求各种事件的概率

31、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

32、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。

33、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。

34、等腰三角形的两个底角相等(简称“等边对等角”)。

35、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

36、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

37、*行线的性质:

38、*面上不相重合的两条直线之间的位置关系为_______或________

39、实数与数轴上点的关系:

40、算术*方根


七年级上册数学知识点 30句菁华(扩展2)

——七年级下册数学知识点总结 40句菁华

1、按性质符号分类:

2、对于数轴上的任意两个点,靠右边的点所表示的数较大。

3、乘方与开方

4、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

5、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。

6、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。

7、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

10、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。

11、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

12、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

13、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

14、*移:

15、大于0的数叫做正数(positive number)。

16、在正数前面加上负号“-”的数叫做负数(negative number)。

17、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

18、正数大于0,0大于负数,正数大于负数。

19、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

20、有理数减法法则

21、有理数乘法法则

22、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

24、根据有理数的乘法法则可以得出

25、做有理数混合运算时,应注意以下运算顺序:

26、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

27、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

28、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

29、单项式中的数字因数叫做这个单项式的系数(coefficient)。

30、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。

31、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

32、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。

33、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。

34、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

35、等角的补角相等,等角的余角相等。

36、相反数的几何意义

37、单项式的系数:是指单项式中的数字因数;

38、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。

39、单项式和多项式统称为整式。

40、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。


七年级上册数学知识点 30句菁华(扩展3)

——七年级下册数学知识点总结归纳 40句菁华

1、相反数

2、*方根

3、乘法

4、单项式的数字因数叫做单项式的系数。

5、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

6、几个单项式的和叫做多项式。

7、多项式中不含字母的项叫做常数项。

8、整式不一定是单项式。

9、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

10、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

11、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

12、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

13、积是一个多项式,其项数与多项式的项数相同。

14、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

15、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

16、*行线的性质:两直线*行。(线的*行

17、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

18、会判轴对称图形,会根据画对称图形,(或在方格中画)

19、常见的轴对称图形有:

20、垂直三要素:垂直关系,垂直记号,垂足。

21、垂线段最短。

22、命题:判断一件事情的语句叫命题。

23、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

24、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

25、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

26、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)

27、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

28、钝角三角形有两条高在外部。

29、三个角对应相等的两个三角形不一定全等。

30、两边及一角对应相等的两个三角形不一定全等。

31、一条斜边和一直角边对应相等的两个三角形全等。

32、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

33、全等图形

34、两个能够重合的图形称为全等图形。

35、全等三角形

36、若Y随X的变化而变化,则X是自变量Y是因变量。

37、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间

38、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。

39、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;

40、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;


七年级上册数学知识点 30句菁华(扩展4)

——数学知识点 100句菁华

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、长方形和正方形是特殊的*行四边形。

5、①相同分母的分数相加、减:分母不变,只和分子相加、减。

6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

7、有理数加法的运算律:

8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

10、有理数中仍然有:乘积是1的两个数互为倒数。

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

12、圆方程

13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

14、从个位减起;

15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

16、哪一位上乘得的积满几十就向前进几。

17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

20、解方程;

21、除法各部分之间的关系:

22、乘法各部分的关系:

23、什么是名数?

24、什么是复名数?

25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

26、环形面积=大圆–小圆=πR2-πr2

27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

34、学生在动手操作中,可以画出并能计算出图形的周长。

35、概念和分类

36、基本规律

37、鸡兔同笼的解题思路

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

42、直角三角形斜边上的中线等于斜边上的一半

43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

44、*行四边形性质定理1 *行四边形的对角相等

45、*行四边形性质定理2 *行四边形的对边相等

46、推论 夹在两条*行线间的*行线段相等

47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形

48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

53、集合的中元素的三个特性:

54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

55、语言描述法:例:{不是直角三角形的三角形}

56、有余数的除法: 被除数=商×除数+余数

57、竖式:

58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。

61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.

62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

67、用字母表示数的写法

68、列方程解答应用题的步骤

69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

73、怎样找准分数应用题中单位“1”

74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)

75、奇数、偶数、质数、合数(正整数自然数)

76、忽视零向量致误

77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

78、单项式与多项式

79、指数

80、1柱、锥、台、球的结构特征

81、2空间几何体的三视图和直观图

82、2.直线、*面*行的判定及其性质

83、3直线、*面垂直的判定及其性质

84、3.1直线与*面垂直的判定

85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形

86、有理数和无理数统称实数.

87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

89、一个数与0相加,仍得这个数。

90、方程与方程组

91、一元二次方程的二次函数的关系

92、同角或等角的余角相等——余角=90-角度。

93、逆定理

94、矩形性质定理1

95、等腰梯形判定定理

96、判定定理3

97、性质定理3

98、圆的外部可以看作是圆心的距离大于半径的点的集合

99、切割线定理

100、扇形面积公式:S扇形=n兀R^2/360=LR/2


七年级上册数学知识点 30句菁华(扩展5)

——中考数学知识点 60句菁华

1、直角坐标系中,点A(1,1)在第一象限。

2、函数=4x+1是正比例函数。

3、cs30°=。

4、同圆或等圆的半径相等。

5、长度相等的两条弧是等弧。

6、经过圆心*分弦的直径垂直于弦。

7、直线与圆有唯一公共点时,叫做直线与圆相切。

8、数的分类及概念数系表:

9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

10、整式和分式

11、指数

12、分式的加、减、乘、除、乘方、开方法则

13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

14、总体:考察对象的全体。

15、个体:总体中每一个考察对象。

16、众数:一组数据中,出现次数最多的数据。

17、角(*角、周角、直角、锐角、钝角)

18、互为余角、互为补角及表示方法

19、公理、定理

20、定义(包括内、外角)

21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

22、一般性质(角)

23、定义及一般形式:

24、根的判别式:

25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

27、一元一次不等式组:

28、应用举例(略)

29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

30、表示方法:⑴解析法;⑵列表法;⑶图象法。

31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

32、特殊角的三角函数值:

33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

34、"等对等"定理及其推论

35、五种位置关系及判定与性质:(重点:相切)

36、圆的内接、外切多边形(三角形、四边形)

37、*分已知弧

38、科学的听课方式

39、求与y轴*行线段的中点:|y1—y2|/2

40、抛物线是轴对称图形。对称轴为直线

41、一次项系数b和二次项系数a共同决定对称轴的位置。

42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。

43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

46、5×1.8 就是求 1.5 的 1.8 倍是多少。

47、求近似数的方法一般有三种:(P10)

48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

49、解方程原理:天**衡。

50、所有的方程都是等式,但等式不一定都是方程。

51、*行四边形面积公式推导:剪拼、*移

52、梯形面积公式推导:旋转

53、身份证码: 18 位

54、重心和三角形3个顶点组成的3个三角形面积相等。

55、直角坐标系中,点A(3,0)在y轴上。

56、当x=2时,函数y=的值为1.

57、当x=3时,函数y=的值为1.

58、函数y=-8x是一次函数。

59、tan45= 1.

60、直角三角形的三条高交点在一个顶点上。


七年级上册数学知识点 30句菁华(扩展6)

——七年级数学下册第五章知识点整理 50句菁华

1、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

2、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

3、*行线的判定:

4、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

5、ADBCADBC180°—∠1—∠2∠3+∠4

6、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8

7、已知互补等量代换同位角相等,两直线*行

8、*行,证明如下:

9、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线

10、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

11、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。

12、象限:两条坐标轴把*面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

13、特殊位置的点的坐标的特点

14、两条直线被第三条直线所截:

15、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

16、*行线的性质:

17、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

18、必然事件发生的概率为1,记作P(必然事件)=1;

19、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

20、第三边取值范围:a—b

21、相关命题:

22、全等图形的大小(面积、周长)、形状都相同。

23、能够完全重合的两个图形是全等图形。

24、全等图形

25、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。

26、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。

27、学好数学最基础的就是把课本知识点及课后习题都掌握好。

28、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

29、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。

30、不等式的解:

31、一元一次不等式的解法:

32、不等式的解集在数轴上表示:

33、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。

34、用一元一次不等式解答实际问题,关键在于寻找问题中的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。

35、以基本事实:“同位角相等,两直线*行”证明: (1)“内错角相等,两直线*行”、“同旁内角互补,两直线*行”、“*行于同一条直线的两条直线*行”

36、单项式中所有字母的指数和叫做单项式的次数。

37、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

38、多项式中的每一个单项式叫做多项式的项。

39、多项式中不含字母的项叫做常数项。

40、一个多项式有几项,就叫做几项式。

41、多项式没有系数的概念,但有次数的概念。

42、单项式或多项式都是整式。

43、底数相同的幂叫做同底数幂。

44、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

45、系数相乘时,注意符号。

46、相同字母的幂相乘时,底数不变,指数相加。

47、运算时注意积的符号,多项式的每一项都包括它前面的符号。

48、积是一个多项式,其项数与多项式的项数相同。

49、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

50、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的*方之差。


七年级上册数学知识点 30句菁华(扩展7)

——八年级上册数学知识点 50句菁华

1、直角三角形全等的判定

2、角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、定理1关于某条直线对称的两个图形是全等形

5、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

6、多边形内角和定理n边形的内角的和等于(n—2)×180°

7、*行四边形性质定理2*行四边形的对边相等

8、*行四边形判定定理2两组对边分别相等的四边形是*行四边形

9、*行四边形判定定理4一组对边*行相等的四边形是*行四边形

10、矩形性质定理1矩形的四个角都是直角

11、菱形性质定理1菱形的四条边都相等

12、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

13、线段垂直*分线上的点与这条线段的两个端点的距离相等

14、等腰三角形的性质

15、运用公式法

16、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。

17、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

18、比较法

19、公式法

20、定理1 在角的*分线上的点到这个角的两边的距离相等

21、推论 2 有一个角等于60°的等腰三角形是等边三角形

22、由坐标找点:例找点B( 3,-2 ) ?

23、关于坐标轴、原点的对称点:

24、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。

26、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

27、因式分解

28、轴对称图形上对应线段相等、对应角相等。

29、点(x,y)关于x轴对称的点的坐标为(x,—y)

30、等边三角形的三个内角相等,等于60°,

31、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

32、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

33、同底数幂的除法

34、因式分解的思路与解题步骤:

35、分组分解法:

36、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。

37、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

38、类比分数的通分得到分式的通分:

39、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

40、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

41、在*面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

42、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

43、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

44、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

45、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

46、刻画数据的集中趋势(*均水*)的量:*均数、众数、中位数

47、个体:组成总体的每一个考察对象称为个体、

48、对角线相等的*行四边形是矩形。

49、对角线互相垂直的*行四边形是菱形。

50、邻边相等的矩形是正方形。


七年级上册数学知识点 30句菁华(扩展8)

——七年级下册数学概念知识 30句菁华

1、概念知识

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

6、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

7、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

8、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

9、全等图形:两个能够重合的图形称为全等图形。

10、自变量:在变化的量中主动发生变化的,变叫自变量。

11、对称轴:轴对称图形中对折的直线叫做对称轴。

12、幂运算(七个公式)

13、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

14、一个多项式有几项,就叫做几项式。

15、单项式和多项式统称为整式。

16、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

17、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

18、幂的乘方是指几个相同的'幂相乘。(am)n表示n个am相乘。

19、此法则也可以逆用,即:amn =(am)n=(an)m。

20、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

21、不同点:

22、此法则也可以逆用,即:am—n = am÷an(a≠0)。

23、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

24、系数相乘时,注意符号。

25、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

26、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

27、运算时注意积的符号,多项式的每一项都包括它前面的符号。

28、积是一个多项式,其项数与多项式的项数相同。

29、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

30、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的*方之差。


七年级上册数学知识点 30句菁华(扩展9)

——七年级语文下册知识点 30句菁华

1、注意下列的字词的读音和字形。

2、课文内容把握

3、当涂:当道,当权

4、才略:政治或军事方面的才干和谋略。

5、更:更新。

6、治经:研究儒家经典。经:指《诗》《书》《礼》《易》《春秋》。

7、肃遂拜蒙母,结友而别。于是鲁肃拜见吕蒙的母亲,与吕蒙结为朋友才分别。

8、对比:强调了……突出了…….

9、表现这首诗思想内容的一个词语是:心远。诗中景物描写突出了宁静闲适的特点。

10、“问君何能尔?心远地自偏”中“尔”指代“结庐在人境,而无车马喧”,“君“指代诗人自己。

11、“风正一帆悬”以“一帆悬”之小景,写出“*阔”之大景的神韵。

12、诗人对旅途的感觉是顺利的,还是不顺利的?从诗中哪个地方可以表现出来?

13、这首写景抒情诗描写了作者客游他的地的羁旅之情,表达出作者放眼山川的宽阔博大的胸襟。

14、“草色遥看近却无”描写早春,给人以美感,把该句呈现的画面描绘出来。

15、诗人为什么说初春的景色“绝胜烟柳满皇都”?

16、作者运用对比的手法,写出对早春的认识,请你把这一认识运用到所有事物就会得出一个普遍性的道理。

17、李贺在诗中以“报君黄金台上意,提携玉龙为君死”抒发了报效国家,勇于献身的激情。

18、从本诗中产生的成语是:“黑云压城城欲摧”,其意思是:形容敌人的气焰嚣张和局势的危急。

19、历代诗评家认为“黑云压城城欲摧,甲光向日金鳞开”中的“压”字和“开”字用得极佳。请你分别赏析。

20、“天净沙”是曲牌名,“秋思”是题目。本曲被后人誉为“秋思之祖”。

21、本诗在写法上有什么特点?试举出其中一点,简要分析。

22、诗人为什么会“白头搔更短,浑欲不胜簪。”

23、试谈谈“烽火连三月,家书抵万金。”写出了怎样的社会现实?

24、结合全诗内容,体会诗题中的“望”字饱含哪两层意思?

25、本诗结构:前四句从视觉角度写高原上疾风暴雪的情景,突出气候之奇。中间六句写酷寒中的军营生活。接着四句写军中的情境和差别宴会的场面。最后四句写雪地送别。

26、运用夸张、对偶、拟人描写沙漠,突出边地奇寒和行路难及作者的豪放情怀,惆怅之情的句子是:瀚海阑干百丈冰,愁云惨淡万里凝。

27、通过写将士的苦寒生活,侧面烘托雪大寒冷的句子是:将军角弓不得控,都护铁衣冷难着。

28、赏析“忽如一夜春风来,千树万树梨花开。”。

29、支点法

30、图画法


七年级上册数学知识点 30句菁华(扩展10)

——七年级下册数学第二单元知识点整理归纳 30句菁华

1、同一*面内,两直线不*行就相交。

2、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。

3、*行线的判定。

4、C

5、ADBEADBCAECD同位角相等,两直线*行

6、证明:

7、已知互补等量代换同位角相等,两直线*行

8、对,证明如下:

9、垂线段最短。

10、*移:①*移前后的两个图形形状大小不变,位置改变。②对应点的线段*行且相等。

11、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

12、不可能事件发生的概率为0,记作P(不可能事件)=0;

13、求几何概率:

14、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

15、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

16、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)

17、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

18、全等图形的大小(面积、周长)、形状都相同。

19、面积相等的两个三角形不一定是全等图形。

20、有一个角是60的等腰三角形是等边三角形。

21、两个能够重合的图形称为全等图形。

22、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。

23、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));

24、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;

25、利用关系式:首先求出关系式,然后直接代入求值即可。

26、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。

27、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

28、掌握正确做题方法

29、巩固基础知识

30、发现规律

相关词条