1、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。
2、想好先解决什么问题,再解决什么问题。
3、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
4、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。
5、估算
6、“混合运算”(乘加、乘减、除加、除减、加减混合以及两步有括号式题)的复习。
7、“万以内数的认识”的复习。
8、“万以内的加、减法”的复习。
9、“解决问题”的复习。
10、一定是直角三角形吗
11、*方根
12、实数
13、求解二元一次方程组
14、用二元一次方程组确定一次函数表达式
15、因式分解时,各项如果有公因式应先提公因式,再进一步分解。
16、将原多项式分解成(x+q)(x+p)的形式。
17、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
18、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
19、连加、连减
20、加减混合
21、关于提问题的题目,可以这样提问:
22、6的乘法口诀
23、在具体情境中,进一步体会加法的意义。
24、探索并掌握两位数加两位数进位加的计算方法,能正确进行计算。
25、不退位减法
26、进一步培养提出问题、解决问题的意识和能力。
27、在具体情境中,理解"比某数多几或少几"的实际问题。
28、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
29、加、减法估算
30、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。
31、圆面积公式的推导:
32、厘米和米
33、笔算减法
34、排列与顺序有关,组合与顺序无关。
35、探索并掌握两位数加两位数不时位加法的计算方法,初步掌握笔算加法的法则,能熟练的计算;
36、学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的必要性;
37、学生初步认识角,知道角的各部分名称,初步学会用尺画角;初步学会用尺画角;
38、长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。
39、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。
40、在统计图中,如果一格表示数量2,那么半格就表示数量1。
41、在一个大于1的数a和它2倍之间,即区间(a,2a)中必存在至少一个素数。
42、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)
43、长度单位:是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。其国际单位是“米”(符号“m”),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。
44、单位1-----一个物体或者几个物体
45、分子相同,分母小的分数大。分母相同,分子大的分数大。
46、角:像红领巾、三角板、钟面、等实物上都有大大小小不同的角。
47、长方形的周长=(长+宽)×2:C=(a+b)×2。
48、圆柱的表面积=上下底面面积+侧面积:
49、米和厘米的关系:1米=100厘米100厘米=1米
50、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
——五年级上册数学知识点 50句菁华
1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
4、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、把因数的位置交换相乘
7、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
8、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
9、用字母表示计算公式。
10、综合计算法
11、*行四边形面积=底×高 S = a h
12、*行四边形底=面积÷高 a = S ÷ h
13、梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
14、1*方米=100*方分米=10000*方厘米
15、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
16、求近似数的方法一般有三种:(P10)
17、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、长方形的周长=(长+宽)×2:C=(a+b)×2。
20、长方形的面积=长×宽:S=ab。
21、三角形的面积=底×高÷2 S=ah÷2
22、长方体的体积=长×宽×高公式:V = abh
23、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
24、5×1.8 就是求 1.5 的 1.8 倍是多少。
25、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
26、方程的检验过程:方程左边=……
27、等底等高的*行四边形面积相等;
28、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
29、正方形的特点:有4个直角,4条边相等。
30、*行四边形的特点:
31、可以表示起点
32、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
33、读数和写数(读数时写汉字写数时写*数字)
34、公式
35、真分数:分子小于分母的分数叫做真分数。真分数小于1。
36、互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
37、自然数按是否是2的倍数来分:奇数偶数
38、自然数按因数的个数来分:质数、合数、1.
39、表示相等关系的式子叫做等式。
40、含有未知数的等式是方程。
41、列方程解应用题的思路:
42、1992所有的质因数的和是( 88 )。
43、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。
44、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。
45、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。
46、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
47、长方形里最大的圆。两者联系:宽=直径
48、车轮滚动一周前进的路程就是车轮的周长。
49、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
50、常用的*方数:112=121 122=144 132=169 142=196 152=225
——六年级上册数学知识点 50句菁华
1、整数加法计算法则:
2、小数乘法法则:
3、小数乘法意义:
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知A比B多(或少)几分之几,求A的解题方法
6、物*置的相对性
7、理解比例的意义和基本性质,会解比例。
8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
9、在*面图上标出物*置的方法:
10、绘制路线图的方法:
11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径
16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
17、求一个数比另一个数多(或少)几分之几(或百分之几)?
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、根据比的基本性质,可以把比化成最简单的整数比。
20、被减数-减数=差被减数-差=减数差+减数=被减数
21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
24、假分数与带分数的互化:
25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、已知一个数的百分之几是多少,求这个数?
28、浓度问题
29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
34、被除数 相当于分子,除数相当于分母。
35、减法的性质:
36、分数除法应用题:
37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
39、根据比的基本性质,可以把比化成最简单的整数比。
40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
42、常用统计图的优点:
43、使学生能在方格纸上用数对确定位置;
44、使学生理解倒数的意义,掌握求倒数的方法;
45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
50、“数与形相结合”的思想
——二年级下册数学知识点 40句菁华
1、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
2、地图上的方向口诀:上北下南,左西右东;
3、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
4、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。
5、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
6、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)
7、正方形有四个直角,四条边都相等;
8、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;
9、读数和写数都从高位起。万以内数的读法:读数时,要从高位读起,万位上是几就读几万,千位上是几就读几千,百位上是几就读几百,十位上是几就读几十,个位上是几就读几,中间有一个“0”或者连续两个“0”就只读一个“零”,末尾不管有几个 0都不读。
10、万以内数的写法:写数时,也要从高位写起,几个千就在千位上写几,几个百就在百位上写几,几个十就在十位上写几,几个一就在个位上写几,哪一位上一个数字也没有就写“0”占位。
11、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。例:2647=( )+( )+( )+( )
12、近似数:与准确数很接近的整十、整百、整千的数。
13、除法算式的读法:通常按照从前往后顺序读,读作除以,=读作等于,其他读法不变。
14、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
15、表内除法的知识点:
16、被除数
17、完全商
18、旋转:在*面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
19、三角形的内角和定理,及三角形外角定理。
20、两边之和大于第三边,两边之差小于第三边。
21、大角对大边。
22、认识角
23、认识直角、锐角、钝角
24、认识钟面:(1)钟面上最短最粗的针是时针,较短较粗的是分针,最细最长的是秒针。
25、认识几时几分方法:时针指在两个数之间,算小数,时针指在12和1之间,算12时,分针指着几,表示几个5分钟。
26、认识大约几时方法:时针接近几就是几时。此时,分针一般指在数字12左右。
27、比较时间:单位不同时要化成相同的时间单位再进行比较。在进行比赛(或做事)时:同样的距离(或同样的事情)所用的时间越多说明速度越慢(或效率越低);所用的时间越少说明速度越快(或效率越高)。
28、学生情况分析:
29、情感与态度目标
30、3/1分子分母同时乘以2,得到6/2,这就是整数3的一个分数形式。
31、3/1分子分母同时乘以4,得到12/4,这也是整数3的一个分数形式。
32、数轴的前点(原点)
33、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)
34、正方形的周长=边长×4:C=4a。
35、正方形的面积=边长×边长:S=a.a=a。
36、*行四边形的面积=底×高:S=ah。
37、正方体的表面积=棱长×棱长×6:S=6a×a。
38、205. 207. ( ). ( ). ( )
39、整千整百数的加减法:
40、因为13?+23?=1所以13和23互为倒数。()
——二年级下册数学应用题 50句菁华
1、妈妈买来9个桃,爸爸买来15个桃,把这些桃*均放在4个盘里,每盘放几个桃?(写综合式)
2、小白兔有72只,小狗有9只,小白兔的只数是小狗的几倍?
3、商店有自行车60辆,卖了4天,每天卖8辆,还剩多少辆?
4、二小一班有32人,二班有40人,做游戏每8人一个组,可以分几组玩?
5、商店上周运进童车50辆,这周又运进48辆,卖出17辆.现在商店有多少辆童车?
6、选择有关的条件和问题,组成一道两步计算的应用题.
7、老师有4盒乒乓球,每盒6个,借给同学8个,老师现在还有几个?
8、面包:每个3元,饼干:每包4元,饮料:每瓶6元;小刚:买4个面包和1瓶饮料,应付多少元?
9、白楼小学二年级一班有42人,二班有38人,三班有39人。二年级一班和二年级二班共有多少人?二年级三班比二年级一班少几人?
10、学校体育室有排球18个,足球的个数比排球多15个,学校体育室有排球、足球共多少个?
11、水果店有水果46筐,上午卖出去28筐,下午又运进来21筐,水果店现在有水果多少筐?
12、二年级一班原有女生28人,男生20人,新学年开始了,又转来9名同学。现在二年级一班共有多少人?
13、三个小组一共修理椅子52把,第一组修理了20把,第二组修理了18把。第三组修理了多少把?
14、有45人在做操,其中女生有3排,每排6人。男生有多少人?
15、妈妈买来一些苹果,第一天吃了一半,第二天吃了剩下的一半,最后还剩2个,妈妈买了几个苹果?
16、妈妈买了6袋苹果,每袋8个。又买了27个梨。妈妈一共买了多少水果?
17、00元 20.00元 7.00元 3.00元
18、小东今年6岁,妈妈今年30岁。小东12岁时,妈妈多少岁?新 课 标 第 一 网
19、小明买一支钢笔花了8元,买书包的钱是买钢笔的6倍,小明一共花了多少钱?我有50元,要买一件29元的衣服和一副18元的眼镜,还剩多少元?(两种方法)
20、妈妈和女儿做红花,妈妈做了58朵,女儿做了50朵。妈妈给女儿几朵,两人的花就一样多?
21、6个小朋友要折80只纸鹤,每人已折了9只,还要折多少只?12元能买3辆小汽车,要买5辆小汽车要多少元?
22、有4篮苹果,每篮9个,把苹果*均分给6个小朋友,每人几个?
23、小朋友吃早餐,每6人坐一张桌子,要坐2张桌子,一共有多少人?
24、幼儿园买了48个白皮球,24个花皮球,*均分给9个班,每班分得几个?
25、商店里有4盒皮球,每盒6个,卖出20个,还剩多少个?
26、车上原有乘客34人,下车15人,上车18人,现在车上多少人?
27、小红家有白兔48只,黑兔8只,白兔是黑兔的多少倍?
28、饲养小组养兔共有7个笼子,每个笼子装4只,后来又买来5只,一共有多少只兔子?
29、4人玩一副飞行棋,有32个同学,大家同时玩需要多少副飞行棋?
30、爷爷今年63岁,我今年9岁,爸爸今年36岁,妈妈今年32岁,爷爷的年龄是小明的几倍?
31、饲养员养了20只公鸡, 12只母鸡, 每4只放入一个笼子, 需要多少个笼子?
32、商店里有4盒皮球,每盒6个,卖出20个,还剩多少个?
33、食品店有85听可乐,上午卖了46听,下午卖了30听,还剩多少听?
34、王老师在文具店买了5张绿卡纸,15张红卡纸。红卡纸是绿卡纸的多少倍?
35、3个组一共收集了94个易拉罐,其中第一组收集了34个易拉罐,第二组收集了29个易拉罐。那第三小组收集了多少个易拉罐?
36、小青有28张画片,照片比画片多16张。小青有多少张照片?
37、书架上的故事书比连环画少15本,书架上有杂志8本,有故事书32本。连环画有多少本?故事书和连环画一共有多少本?
38、故事书有74页,小丽第一天看了20页,第二天看了23页,还剩多少页没有看?
39、小红看故事书,第一天看了15页,第二天看的比第一天少6页,两天一共看了多少页?
40、食堂运来3车大米,每车8袋,吃掉18袋后,还剩多少袋?
41、2张纸可以做8朵花,5张纸能做多少朵?
42、同学们去公园划船,每6人一组,需要4条船。如果每8人一组,需要几条船?
43、小明和小红写字,小明写了3行,每行6个,小红写了15个,谁写得多?多几个?
44、红领巾养鸡场有母鸡 60只,公鸡比母鸡少14只,公鸡有多少只?
45、老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?
46、同学们参加劳动。二(1)班去了26人,二(2)班去了38人,每8人编成一组,可以编几组?
47、王刚看一本故事书,每天看6页,看了8天,还剩20页,这本书一共有多少页?
48、校园里有8排松树,每排7棵。37棵松树已经浇了水,还有多少棵没浇水?
49、(1)学校买来54盒粉笔,用去34盒,还剩多少盒?(2)学校买来了30盒白粉笔,24盒彩色粉笔,用去34盒,还剩多少盒?
50、学校体育室有排球18个,足球的个数比排球多15个,学校体育室有排球、
——数学七年级上册知识点 50句菁华
1、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
2、几何图形
3、生活中的立体图形
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
6、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
7、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
8、去括号法则
9、角的度量
10、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
11、方程的解
12、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
13、解一元一次方程的一般步骤:
14、扇形统计图
15、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p
16、正数:大于0的数。
17、负数:小于0的数。
18、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
19、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
20、乘法分配律:a(b+c)=ab+ac
21、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
22、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
23、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
24、同号两数相加,取相同的符号,并把绝对值相加。
25、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
26、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
27、在直线上任取一个点表示数0,这个点叫做原点(origin).
28、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
29、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
30、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
31、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.
32、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
33、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
34、有理数除法法则
35、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;
36、所有的有理数都可以用分数表示,π不是有理数。
37、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
38、在有理数的加法中,
39、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
40、次数:单项式中所有的字母的指数和
41、几个单项式的和叫做多项式。
42、列方程是解决问题的重要方法,利用方程可以解出未知数。
43、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
44、先看笔记后做作业。
45、利用数轴表示两数大小
46、可用字母表示为
47、有理数的乘法法则
48、倒数
49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
——数学五年级知识点 40句菁华
1、分数:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。
2、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
3、互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和9。
4、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。
5、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。
6、会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;
7、205≈2.2 (保留一位小数)
8、205≈2.21 (保留两位小数)
9、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体*均分成若干份,这样的一份或几份都可以用分数来表示。
10、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
11、分数和小数的互化
12、3=3/10 0.03=3/100 0.003=3/1000
13、方程的意义
14、列方程解应用题的一般步骤
15、一本书100页,*均每页有a行,每行有b个字,那么,这本书一共有( )个字。
16、根据运算定律写出:
17、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )
18、一块长方形试验田有4.2公顷,它的长是420米,它的宽是( )米。
19、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。( )
20、某校六年级有两个班,上学期级数学*均成绩是85分。已知六(1)班40人,*均成绩为87.1分;六(2)班有42人,*均成绩是多少分?
21、15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?
22、乘法交换律:axb=bxa
23、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。
24、计量很短的时间,常用秒。秒是比分更小的时间单位。
25、动手操作,思维拓展
26、计算小数乘法末尾对齐,按整数乘法法则进行计算。
27、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
28、长方形的周长=(长+宽)×2 C=(a+b)×2
29、长方形的面积=长×宽S=ab
30、正方形的面积=边长×边长S=a.a= a
31、直径=半径×2 d=2r半径=直径÷2 r= d÷2
32、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
33、长方体的体积=长×宽×高公式:V = abh
34、对*移和旋转现象的初步认识:
35、分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
36、分数化成小数的方法:
37、异分母分数要先通分才能够相加、减。
38、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000 。
39、梯形面积公式推导:
40、被减数-减数=差被减数-差=减数差+减数=被减数
——高考数学知识点总结 40句菁华
1、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
2、求解与函数有关的问题易忽略定义域优先的原则。
3、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
5、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
6、反正弦、反余弦、反正切函数的取值范围分别是
7、你还记得某些特殊角的三角函数值吗?
8、.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量*行,但与任意向量都不垂直。
9、是向量与*行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
10、对不重合的两条直线
11、直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
12、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
13、利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
14、解析几何问题的求解中,*面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
15、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。
16、线面*行和面面*行的定义、判定和性质定理你掌握了吗?线线*行、线面*行、面面*行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种*行之间转换的条件是什么?
17、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。
18、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
19、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
20、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
21、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
22、函数的图象的*移,方程的*移以及点的*移公式易混:
23、形如的周期都是,但的周期为。
24、正弦定理时易忘比值还等于2R。
25、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)
26、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
27、求概率时,正难则反(根据p1+p2+……+pn=1);
28、函数的基本概念
29、如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).
30、函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.
31、求导
32、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
33、Venn图:
34、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
35、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
36、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
38、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
39、二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
40、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;