初一数学知识点归纳 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 初一,数学

1、单项式:;单独的一个数或一个字母也是单项式

2、单项式的次数:;

3、多项式的次数:;

4、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项

5、系数化为1

6、检验

7、二元一次方程组

8、列方程解应用题的一般步骤:

9、一些实际问题中的规律和等量关系:

10、对角线互相垂直的*行四边形是菱形。

11、性质:

12、正数(positionnumber):大于0的数叫做正数。

13、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

14、有理数加法法则

15、有理数乘法法则

16、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

17、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

18、命题:判断一件事情的语句叫命题。

19、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

20、对应点:*移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

21、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

22、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。

23、多边形的内角:多边形相邻两边组成的角叫做它的内角。

24、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

25、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

26、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

27、数轴:数轴是规定了原点、正方向、单位长度的一条直线.

28、2.1三角形的内角

29、3.1多边形

30、绝对值 |a|0.

31、倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数,a、b互为倒数。

32、立方根

33、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小;

34、无理数的比较大小:

35、加法

36、乘法

37、乘方与开方

38、有理数比大小:

39、3 有理数的加减法

40、1 多姿多彩的图形


初一数学知识点归纳 40句菁华扩展阅读


初一数学知识点归纳 40句菁华(扩展1)

——数学知识点 100句菁华

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、长方形和正方形是特殊的*行四边形。

5、①相同分母的分数相加、减:分母不变,只和分子相加、减。

6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

7、有理数加法的运算律:

8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

10、有理数中仍然有:乘积是1的两个数互为倒数。

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

12、圆方程

13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

14、从个位减起;

15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

16、哪一位上乘得的积满几十就向前进几。

17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

20、解方程;

21、除法各部分之间的关系:

22、乘法各部分的关系:

23、什么是名数?

24、什么是复名数?

25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

26、环形面积=大圆–小圆=πR2-πr2

27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

34、学生在动手操作中,可以画出并能计算出图形的周长。

35、概念和分类

36、基本规律

37、鸡兔同笼的解题思路

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

42、直角三角形斜边上的中线等于斜边上的一半

43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

44、*行四边形性质定理1 *行四边形的对角相等

45、*行四边形性质定理2 *行四边形的对边相等

46、推论 夹在两条*行线间的*行线段相等

47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形

48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

53、集合的中元素的三个特性:

54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

55、语言描述法:例:{不是直角三角形的三角形}

56、有余数的除法: 被除数=商×除数+余数

57、竖式:

58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。

61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.

62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

67、用字母表示数的写法

68、列方程解答应用题的步骤

69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

73、怎样找准分数应用题中单位“1”

74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)

75、奇数、偶数、质数、合数(正整数自然数)

76、忽视零向量致误

77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

78、单项式与多项式

79、指数

80、1柱、锥、台、球的结构特征

81、2空间几何体的三视图和直观图

82、2.直线、*面*行的判定及其性质

83、3直线、*面垂直的判定及其性质

84、3.1直线与*面垂直的判定

85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形

86、有理数和无理数统称实数.

87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

89、一个数与0相加,仍得这个数。

90、方程与方程组

91、一元二次方程的二次函数的关系

92、同角或等角的余角相等——余角=90-角度。

93、逆定理

94、矩形性质定理1

95、等腰梯形判定定理

96、判定定理3

97、性质定理3

98、圆的外部可以看作是圆心的距离大于半径的点的集合

99、切割线定理

100、扇形面积公式:S扇形=n兀R^2/360=LR/2


初一数学知识点归纳 40句菁华(扩展2)

——初一数学上册知识点总结 50句菁华

1、点、线、面、体

2、线段、射线、直线

3、线段的性质

4、角的表示

5、多边形:

6、方程

7、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net).

8、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

9、连接两点间的线段的长度,叫做这两点的距离(distance).

10、括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

11、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

12、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

13、检:检验所求的解是否符合题意.

14、0表示的意义

15、单项式的系数:

16、单项式的次数:

17、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。

18、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

19、一元一次不等式与一次函数的综合运用:

20、解不等式的诀窍

21、解不等式组的口诀

22、同角或等角的补角相等

23、直线外一点与直线上各点连接的所有线段中,垂线段最短

24、如果两条直线都和第三条直线*行,这两条直线也互相*行

25、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

26、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

27、直角三角形斜边上的中线等于斜边上的一半

28、定理 线段垂直*分线上的点和这条线段两个端点的距离相等 ?

29、同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

30、零指数与负指数公式:

31、配方:

32、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

33、判断三条线段能否组成三角形:

34、第三边取值范围:

35、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

36、培养学生获取信息,分析问题,处理问题的能力。

37、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

38、等式的性质:

39、只有符号不同的两个数称互为相反数。

40、左边第一个非零的数字起,所有的数字都是有效数字。

41、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

42、2 有理数

43、系数:;

44、多项式:;

45、去分母

46、去括号

47、系数化为1

48、一些实际问题中的规律和等量关系:

49、同号两数相加,取相同的符号,并把绝对值相加;

50、2.1*行线


初一数学知识点归纳 40句菁华(扩展3)

——高二数学知识点归纳 40句菁华

1、数列的前n项和公式Sn:

2、等差数列的前n项和公式:Sn= Sn= Sn=

3、三个数成等差的设法:a-d,a,a+d;四个数成等差的`设法:a-3d,a-d,,a+d,a+3d

4、裂项法求和:如an=1/n(n+1)

5、在等差数列 中,有关Sn 的最值问题--常用邻项变号法求解:

6、主要思想与方法:

7、*面与*面

8、不等式证明的依据

9、逻辑连结词;

10、映射;

11、函数;

12、互为反函数的函数图象间的关系;

13、指数概念的扩充;

14、指数函数;

15、对数函数。

16、数列;

17、任意角的三角函数;

18、正弦函数、余弦函数的图象和性质;

19、周期函数;

20、正切函数的图象和性质;

21、斜三角形解法举例。

22、线段的定比分点;

23、不等式的基本性质;

24、直线的倾斜角和斜率;

25、曲线与方程的概念;

26、由已知条件列出曲线方程;

27、直线的倾斜角的范围是在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

28、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

29、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

30、直线被圆锥曲线截得的弦长公式:

31、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

32、导数的定义:在点处的导数记作.

33、用导数研究函数的最值

34、生活中常见的函数优化问题

35、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

36、随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。

37、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

38、三角形三角关系:A+B+C=180°;C=180°-(A+B);

39、正弦定理的变形公式:

40、,


初一数学知识点归纳 40句菁华(扩展4)

——初中七年级数学知识点 50句菁华

1、生活中的立体图形

2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

3、代数式

4、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

5、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

6、解一元一次方程的一般步骤:

7、普查与抽样调查

8、扇形统计图

9、整式的乘除的公式运用(六条)及逆运用(数的计算)。

10、整式的乘法公式(两条)。

11、互为余角和互为补角和

12、必然事件不可能事件,不确定事件

13、方法归纳:(1)求边相等可以利用

14、证明:

15、1周角=__________*角=_____________直角=____________.

16、*行线的性质:两直线*行,_________相等,________相等,________互补.

17、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

18、相反数:

19、有理数乘方的法则:

20、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

21、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、高线、中线、角*分线的意义和做法

24、正数:大于0的数。

25、负数:小于0的数。

26、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

27、整数:正整数、0、负整数,统称整数。

28、数轴的三要素:原点、正方向、单位长度。

29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

30、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

31、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5、a?b=a+(?b)减去一个数,等于加这个数的相反数。

32、乘积是1的两个数互为倒数。

33、乘法结合律:(ab)c=a(bc)

34、整式:单项式和多项式的统称叫整式。

35、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

36、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

37、若系数是带分数,要化成假分数。

38、在单项式中字母不可以做分母,分子可以。

39、单独的数“0”的系数是零,次数也是零。

40、在直线上任取一个点表示数0,这个点叫做原点(origin)。

41、有理数减法法则

42、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

43、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly

44、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

45、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

46、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。

47、角∠(angle)也是一种基本的几何图形。

48、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary

49、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary

50、等角的补角相等,等角的余角相等。


初一数学知识点归纳 40句菁华(扩展5)

——高等数学知识点总结 50句菁华

1、了解函数的奇偶性、单调性、周期性、和有界性。

2、理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。

3、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。

4、熟练运用微分中值定理证明简单命题。

5、了解函数图形的作图步骤。了解方程求近似解的两种方法:二分法、切线法。

6、会求有理函数、三角函数、有理式和简单无理函数的不定积分

7、掌握不定积分的换元积分法。

8、理解定积分的概念,掌握定积分的性质及定积分中值定理。

9、掌握反常积分的运算。

10、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。

11、掌握一阶线性微分方程的解法,会解伯努利方程.

12、掌握向量的线性运算,掌握单位向量、方向角与方向余弦,掌握向量的坐标表达式掌握用坐标表达式进行向量运算方法。

13、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。

14、理解曲面方程的概念,了解二次曲面方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线*行于坐标轴的柱面方程。

15、了解空间曲线的概念,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标*面上的投影,并会求其方程。

16、列方程解应用题的常用公式:

17、代数式

18、一元二次方程的解法

19、韦达定理

20、一元二次方程根的情况

21、点,线,面

22、直线外一点与直线上各点连接的所有线段中,垂线段最短

23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

24、同旁内角互补,两直线*行

25、两直线*行,同位角相等

26、推论

27、三角形内角和定理:

28、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

29、定理1

30、等腰三角形的性质定理

31、逆定理

32、多边形内角和定理

33、矩形性质定理2

34、菱形判定定理2

35、等腰梯形的两条对角线相等

36、*行线等分线段定理

37、同圆或等圆的半径相等

38、到已知角的两边距离相等的点的轨迹,是这个角的*分线

39、弦切角定理

40、正n边形的面积Sn=pn*rn/2

41、扇形面积公式:S扇形=n兀R^2/360=LR/2

42、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

43、绝对值:

44、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

45、有理数乘法的运算律:

46、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

47、混合运算法则:先乘方,后乘除,最后加减。

48、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

49、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

50、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0


初一数学知识点归纳 40句菁华(扩展6)

——《孔雀东南飞》知识点归纳 40句菁华

1、告诉:

2、见面:

3、以为,认为,作为,成为:

4、给,替,向:

5、是,存在:

6、建安中:建安年间(公元196年—公元220年)。建安,东汉献帝刘协的年号。

7、云尔:句末语气词。如此而已。

8、大人故嫌迟:婆婆故意嫌我织得慢。大人,对长辈的尊称,这里指婆婆。

9、徒:徒然,白白地。

10、区区:小,这里指见识短浅。

11、自专由:与下句“汝岂得自由”中的“自由”都是自作主张的意思。专,独断专行。由,随意,任意。

12、贤:这里指聪明贤惠。

13、取:通“娶”,娶妻。

14、床:古代的一种坐具。

15、报府:赴府,指回到庐江太守府。

16、谓言:总以为。

17、卒:完成,引申为报答。

18、后人:指府吏将来再娶的妻子。

19、蹑(niè):踩,踏,这里指穿鞋。

20、珰(dāng):耳坠。

21、初七及下九:七月七日和每月的十九日。初七,指农历七月七日,旧时妇女在这天晚上在院子里陈设瓜果,向织女星祈祷,祈求提高刺绣缝纫技巧,称为“乞巧”。下九,古人以每月的二十九为上九,初九为中九,十九为下九。在汉朝时候,每月十九日是妇女欢聚的日子。

22、区区:这里是诚挚的意思,与上面“何乃太区区”中的“区区”意思不同。

23、若见录:如此记住我。见录,记着我。见,被。录,记。

24、纫:通“韧”,柔韧牢固。

25、亲父兄:即同胞兄。

26、逆:逆料,想到将来。

27、悲摧:悲痛,伤心。

28、丁宁:嘱咐我。丁宁,嘱咐,后写作“叮咛”。

29、适:出嫁。

30、不堪:这里是“不能做”的意思。

31、交语:交相传话。

32、龙子幡(fān):绣龙的旗帜。

33、婀娜(ē nuó):轻轻飘动的样子。

34、流苏:用五彩羽毛做的下垂的缨子。

35、适:刚才。

36、日胜贵:一天比一天高贵。

37、恨恨:抱恨不已,这里指极度无奈。

38、情何薄:怎能算是薄情。

39、黄昏:古时计算时间按十二地支将一日分为十二个“时辰”。“黄昏”是“戌时”(相当于现代的晚上7时至9时)。下句的“人定”是“亥时”(相当于现代的晚上9时至11时)。

40、驻足:停步。


初一数学知识点归纳 40句菁华(扩展7)

——三年级上册数学知识点总结 40句菁华

1、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

2、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

3、比较大小的方法:

4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

6、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

7、三位数乘一位数:积有可能是三位数,也有可能是四位数。

8、(关于“大约)应用题:

9、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)

10、被减数是三位数的连续退位减法的运算步骤:

11、乘法交换律:a×b=b×a交换因数的位置积不变。

12、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

13、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。

14、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

15、封闭图形一周的长度,就是它的周长。

16、连减的简便计算:

17、加减混合的简便计算:

18、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)

19、减法的验算方法:

20、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

21、两个三位数相加的和:可能是三位数,也有可能是四位数。

22、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

23、加法公式:加数+加数=和

24、长度单位的关系式有:(每两个相邻的`长度单位之间的进率是10 )

25、单位换算:小到大除,大到小乘。

26、分数大小比较的应用题:工作效率大的快,工作时间小的快。

27、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

28、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

29、关于0的一些规定:

30、乘除法的估算:4舍5入法。

31、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。

32、认识整千数(记忆:10个一千是一万)

33、读数和写数(读数时写汉字写数时写*数字)

34、要认真审题,弄清题目要求后再做。

35、“公顷”(测量菜地面积、果园面积)和“*方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;

36、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。

37、用乘法和除法两步计算解决实际问题的方法:

38、小数加法、减法的简便计算:

39、常用的土地面积单位有(公顷)和(*方千米)。

40、在乘法里,乘数也叫做因数。


初一数学知识点归纳 40句菁华(扩展8)

——六年级下册数学知识点归纳 40句菁华

1、常见的圆柱圆锥解决问题:

2、正方形判定定理

3、圆锥解析几何定义:圆锥面和一个截它的*面(满足交线为圆)组成的空间几何图形叫圆锥。

4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

5、整十整百数乘一位数

6、比较大小的方法:

7、多位数的写法

8、多位数的大小比较:

9、“万”“亿”作单位的数:

10、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

11、按比例分配:

12、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

13、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

14、判断这两个量的比值是否一定,比值一定就成正比例关系;

15、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)

16、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

17、以长方形的宽为底面周长,长为高。

18、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

19、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

20、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

21、圆锥的特征:

22、圆锥的相关计算公式:

23、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

24、写法:在所写数的前面加上“—” 练习: 零上 16 摄氏度 零下

25、摄氏度

26、(1)圆柱周围的面叫做侧面。

27、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个*行四边形。

28、温馨提示:圆柱的底面是圆形,面不是椭圆。

29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch

30、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

31、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

32、一个圆柱占空间的大小,叫做这个圆柱的体积。

33、圆锥是由一个底面和一个侧面两部分组成。

34、温馨提示:

35、百分数。

36、统计。

37、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

38、两条*行线之间的距离处处相等。

39、在1、3、5、7、……、1999、2001这个数列中,数字“5”一共出现了多少次?

40、统计表制作步骤:


初一数学知识点归纳 40句菁华(扩展9)

——高一生物知识点归纳总结 40句菁华

1、艾弗里实验的结论:DNA是转化因子,是使R型细菌产生稳定的遗传变化的物质,即DNA是遗传物质。

2、噬菌体侵染细菌的实验:

3、肺炎双球菌的转化实验和噬菌体侵染细菌的实验只证明DNA是遗传物质(而没有证明它是主要遗传物质)

4、①遗传物质的载体有:染色体、线绿体、叶绿体。

5、染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。

6、核孔:实现细胞核与细胞质之间的物质交换和信息交流

7、免疫功能(抗体)

8、n个氨基酸脱水缩合形成m条多肽链时,共脱去(n-m)个水分子,形成(n-m)个肽键,至少存在m个-NH2和m个-COOH,形成的蛋白质的分子量为n?氨基酸的*均分子量-18(n-m)

9、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核

10、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折。

11、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同。

12、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的化合物为蛋白质。

13、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区别在于R基的不同。

14、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(—COOH)与另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,如图:

15、细胞内良好储能物质:脂肪

16、直接能源物质:ATP

17、糖类:

18、多糖,蛋白质,核酸等都是生物大分子,基本组成单位依次为:单糖、氨基酸、核苷酸。

19、水存在形式运送营养物质及代谢废物结合水(4.5%)

20、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。

21、细胞膜和其他生物膜都是选择透过性膜

22、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并生成ATP过程

23、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。

24、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成)

25、细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一*卵有丝分裂形成);形态、功能不能原因是不同细胞中遗传信息执行情况不同。

26、根尖分生区细胞没有的细胞器是叶绿体、中心体、液泡。

27、与蛋白质合成和分泌有关的细胞器有核糖体、内质网、高尔基体、线粒体。

28、与主动运输有关的细胞器是线粒体、核糖体。

29、与能量转换有关的细胞器是叶绿体、线粒体。

30、具有核酸的细胞器有线粒体、叶绿体、核糖体。

31、不同生物无氧呼吸的产物不同,其原因在于催化反应的酶不同。动物和人体无氧呼吸的产物是乳酸。微生物的无氧呼吸称为发酵,但动植物的无氧呼吸不能称为发酵。2.原核生物无线粒体,但有些原核生物仍可进行有氧呼吸。

32、水稻等植物长期水淹后烂根的原因:无氧呼吸的产物酒精对细胞有毒害作用。玉米种子烂胚的原因:无氧呼吸产生的乳酸对细胞有毒害作用。

33、生物体具应激性,因而能适应周围环境。

34、糖类是构成生物体的重要成分,是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。

35、脂类包括脂肪、类脂和固醇等,这些物质普遍存在于生物体内。

36、蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。

37、核酸是一切生物的遗传物质,对于生物体的遗传变异和蛋白质的生物合成有极重要作用。

38、组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。

39、线粒体是活细胞进行有氧呼吸的主要场所。

40、高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。

相关词条