1、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。
2、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、比较大小的方法:
4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
6、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
7、三位数乘一位数:积有可能是三位数,也有可能是四位数。
8、(关于“大约)应用题:
9、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)
10、被减数是三位数的连续退位减法的运算步骤:
11、乘法交换律:a×b=b×a交换因数的位置积不变。
12、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍
13、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。
14、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
15、封闭图形一周的长度,就是它的周长。
16、连减的简便计算:
17、加减混合的简便计算:
18、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)
19、减法的验算方法:
20、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
21、两个三位数相加的和:可能是三位数,也有可能是四位数。
22、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。
23、加法公式:加数+加数=和
24、长度单位的关系式有:(每两个相邻的`长度单位之间的进率是10 )
25、单位换算:小到大除,大到小乘。
26、分数大小比较的应用题:工作效率大的快,工作时间小的快。
27、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】
28、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )
29、关于0的一些规定:
30、乘除法的估算:4舍5入法。
31、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
32、认识整千数(记忆:10个一千是一万)
33、读数和写数(读数时写汉字写数时写*数字)
34、要认真审题,弄清题目要求后再做。
35、“公顷”(测量菜地面积、果园面积)和“*方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;
36、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。
37、用乘法和除法两步计算解决实际问题的方法:
38、小数加法、减法的简便计算:
39、常用的土地面积单位有(公顷)和(*方千米)。
40、在乘法里,乘数也叫做因数。
——三年级上册数学的知识点归纳 40句菁华
1、计算一段时间,可以用结束的时刻减去开始的时刻。
2、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
3、常用长度单位:米、分米、厘米、毫米、千米。
4、质量单位 :吨、千克、克,每相邻两个单位之间的进率都是1000 。
5、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。
6、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。
7、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。
8、在一个长方形中剪出一个最大的正方形,长方形的宽就是这个正方形的边长。
9、A项 B项
10、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。
11、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。
12、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。
13、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)
14、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
15、在计算长度时,只有相同的长度单位才能相加减。
16、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
17、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
18、读数和写数(读数时写汉字写数时写*数字)
19、数的大小比较:
20、被减数是三位数的连续退位减法的运算步骤:
21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍
22、正方形的特点:有4个直角,4条边相等。
23、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)
24、减法的验算方法:
25、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
26、分母越大,分数单位越小,的分数单位是1/2
27、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。
28、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
29、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
30、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。
31、分数大小比较的应用题:工作效率大的快,工作时间小的快。
32、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。
33、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
34、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。
35、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。
36、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)
37、笔算除法顺序:确定商的位数,试商,检查,验算。
38、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。
39、*年:2月有28天的月份是*年,*年有365天。
40、闰年:2月有29天的月份是*年,*年有365天。
——六年级上册数学知识点总结 40句菁华
1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
4、圆周率实验:
5、区分周长的一半和半圆的周长:
6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
7、取近似数的方法:
8、无限小数:小数部分的位数是无限的小数,叫做无限小数。
9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。
15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。
19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。
22、分数的分类
23、分子分母是互质数的分数叫做最简分数。
24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
25、圆的面积=圆周率×半径×半径
26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
29、分数除法:分数除法是分数乘法的逆运算。
30、你还能得到哪些信息?
31、文化教育支出了多少元?购买衣物支出了多少元?
32、因为零不能作除数,所以分数的分母不能为零。
33、被除数 相当于分子,除数相当于分母。
34、整数加法计算法则:
35、同分母分数加减法计算方法:
36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
37、用字母表示数的意义和作用
38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
39、、长方体
40、圆锥体
——小学四年级上册数学知识点总结 40句菁华
1、表示物体个数:1,2,3,4,5,6,7,8,9,10,…….都是自然数。一个物体也没有,用0来表示,0也是自然数。所有的自然数都是整数。
2、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
3、ON╱CE:开关及清除屏键,清除显示屏上的内容。
4、边长是1千米的正方形面积是1*方千米。
5、长方形面积=长×宽
6、直线、射线、线段
7、量角的步骤:
8、经过一点可以画无数条直线;经过两个点,只能画一条直线。
9、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°
10、三位数乘两位数的笔算方法:
11、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
12、速度单位通常有:千米/时、米/分、米/秒等。
13、与两条*行线互相垂直的线段长度都相等。或者说:两条*行线之间的距离处处相等。经过直线上一点(或外一点)作垂线,可以画一条。
14、从*行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做*行四边形的高,垂足所在的边叫做*行四边形的底。
15、*行四边形的特点:容易变形。例如:伸缩门、升降机
16、三角形三个内角的和是180°,四边形四个内角的和是360°。
17、商的变化规律:
18、条形统计图的特点:能直观的看出各种数量的大小,便于比较。
19、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定
20、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。
21、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
22、连加、连减
23、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。
24、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。
25、读数时,只是在每一级的末尾加上“万”或“亿”字;每级末尾的0都不读,其它数位有一个0或几个0,都只读一个“零”。
26、通常我们用“四舍五入”的方法省略尾数求一个数的近似数。
27、升:升是常用的容量单位。计量水、油、饮料等液体的多少,通常用升作单位,用L表示。
28、两、三位数除以整十数的估算:先用被除数的前两位除以除数,如果够除商就是两位数,如果不够,就看被除数的前三位,商是一位数。
29、两、三位数除以两位数,可以用四舍五入法,把除数看作整十数来试商。四舍之后,除数小了,初商可能偏大,要调小;五入之后,除数大了,初商可能偏小,要调大;每次余下的数都要比除数小。
30、用除法解决周期现象中的问题比较方便。
31、分析问题从问题想起,去寻找相关的已知条件,逐步解答问题。
32、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法,再算加、减法。
33、同级的运算,哪个在前就先算哪一个。
34、线段有两个端点,可测量;射线有一个端点,不可测量;直线没有端点,不可测量。
35、量角时要注意量角器的中心与顶点重合,0度刻度线与角的一条边重合。
36、角的计量单位是“度”,用符号“°”表示。把半圆*分成180等份,每一份所对的、角的大小是l度。记做1°
37、角的大小与角的两边画出的长短没关系。角的大小要看两条边*的'大小,*得越大,角越大。
38、两组对边分别*行的四边形叫做*行四边形;*行四边形有无数条高,*行四边形不是轴对称图形。
39、沏茶类问题策略:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。
40、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。
——五年级上册数学知识点 60句菁华
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、能正确进行乘号的简写,略写;小数乘法的计算法则;
6、构建初步的空间想象力;
7、多边形面积的计算。
8、计算小数加法先把小数点对齐,再把相同数位上的数相加
9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
10、用计算器来验算
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、构建空间想象力:
13、①含有未知数的等式称为方程。
14、*行四边形面积=底×高字母公式:s=ah
15、分割法;
16、画垂线时用实线画。
17、*行四边形面积=底×高(s*=ah)
18、三角形高=面积×2÷底 h = 2 S ÷ a
19、运算定律和性质:
20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
21、(关于“大约)应用题:
22、圆柱的侧面积=底面圆的周长×高:S=ch。
23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。
24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
25、相邻两个质量单位进率是1000。
26、圆的面积=圆周率×半径×半径:s=πr2。
27、*行四边形的面积=底×高S=ah
28、正方体的表面积=棱长×棱长×6公式:S=6a2
29、镜子内外的左右方向是相反的。
30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
32、5×1.8 就是求 1.5 的 1.8 倍是多少。
33、所有的方程都是等式,但等式不一定都是方程。
34、方程的检验过程:方程左边=……
35、身份证码:18位
36、长方形和正方形是特殊的*行四边形。
37、解方程。
38、求一个数的近似数:
39、分母:表示*均分的份数。分子:表示取出的份数。
40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。
42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
43、含有未知数的等式是方程。
44、求方程中未知数的过程,叫做解方程。
45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
46、1992所有的质因数的和是( 88 )。
47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。
49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。
50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
55、有些事件的发生是确定的,有些是不确定的。 可能
56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)
57、正方形里最大的圆。两者联系:边长=直径
58、长方形里最大的圆。两者联系:宽=直径
59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
——初中数学知识点总结 50句菁华
1、实数
2、整式与分式
3、一元二次方程根的情况
4、函数
5、全等三角形的对应边、对应角相等
6、勾股定理的逆定理
7、*行四边形判定定理1
8、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
9、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
10、点、线、面、体
11、圆的内部可以看作是圆心的距离小于半径的点的集合
12、线段的中点:
13、一元一次方程
14、解一元一次方程的一般步骤:
15、圆的外切四边形的两组对边的和相等
16、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
17、乘积的符号的确定
18、定义:有一组邻边相等的*行四边形叫做菱形
19、推论2经过切点且垂直于切线的直线必经过圆心
20、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
21、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
22、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
23、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)
24、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
25、人们通常用一条直线上的点表示数,这条直线叫做数轴。
26、两个负数,绝对值大的反而小。
27、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
28、有理数中仍然有:乘积是1的两个数互为倒数。
29、过两点有且只有一条直线。
30、同位角相等,两直线*行。
31、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
32、定理四边形的内角和等于360°。
33、四边形的外角和等于360°。
34、推论任意多边的外角和等于360°。
35、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
36、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
37、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
38、定理1关于中心对称的两个图形是全等的
39、等腰梯形的两条对角线相等。
40、(2)合比性质:
41、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。
42、圆是定点的距离等于定长的点的集合。
43、①两圆外离d﹥R+r。
44、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
47、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
48、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
49、*行公理推论:*行于同一直线的两条直线互相*行。如果b//a,c//a,那么b//c
50、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。
——九年级化学下册知识点总结 40句菁华
1、镁条燃烧:剧烈燃烧.耀眼白光.生成白烟
2、硫在空气中燃烧:剧烈燃烧、放热、有刺激味气体生成、空气中淡蓝色火焰(氧气中蓝紫色火焰)
3、甲烷燃烧:蓝色火焰、放热、生成使石灰水变浑浊气体和使无水CuSO4变蓝的液体(水)
4、取用药品注意节约:取用药品应严格按实验室规定的用量,如果没有说明用量,一般取最少量,即液体取1-2ml,固体只要盖满试管底部。
5、纯净物:只由一种物质组成的。如n2 o2 co2 p2o5等。
6、单质:由同种元素组成的纯净物。如n2 o2 s p等。
7、氧化物:由两种元素组成的纯净物中,其中一种元素的氧元素的化合物。如co2 so2等。
8、稀有气体的性质和用途:p25
9、药品:过氧化氢和二氧化锰或高锰酸钾或氯酸钾和二氧化锰
10、检验方法:用带火星的木条伸入集气瓶内,如果木条复燃,说明该瓶内的气体是氧气。
11、物理性质:无色无味的气体,难溶于水,密度比空气小,是相同条件下密度最小的气体。
12、化学性质——可燃性。
13、分子的特征:
14、解释在日常生活中,遇到的这些现象::
15、构成物质的微粒有:分子、原子、离子
16、水的净化(1)、加入絮凝剂吸附杂质(吸附沉淀)(2)、过滤(3)、消毒(加氯气或一氧化二氯)
17、我国的水资源情况及水资源污染:主要水体污染来源:工业污染、农业污染、生活污染。
18、相对原子质量只是一个比,不是原子的实际质量。它的单位是1,省略不写 。
19、元素符号的意义:a.表示一种元素.b.表是这种元素的一个原子
20、元素周期表
21、离子的形成:原子得或失电子后形成的带电原子
22、化合价的应用:依据化合物中各元素化合价的代数和为0。
23、元素符号前的数字:表示原子个数 2n
24、离子符号前面的数字:表示离子个数
25、炭黑 颜料
26、纯金属 铜 铁 铝 钛
27、金属的腐蚀和防护: 1.铁生锈的条件 与氧气和水蒸气等发生化学变化
28、防止铁生锈地方法:1.干燥,2.加一层保护膜3.改变其内部结构
29、最简单的有机物是CH4。
30、化学变化中最小的粒子是原子。
31、地壳中含量最多的元素是氧。
32、地壳中含量最多的金属元素是铝。
33、大理石与稀盐酸:固体逐渐溶解、有使澄清石灰水变浑浊的气体
34、铁丝放入CuSO4溶液中:铁丝表面覆盖一层红色物质,蓝色溶液变成浅绿色。
35、量筒的使用
36、酒精灯使用注意事项:
37、对人体吸入的空气和呼出的气体探究:p10—p12
38、物理变化:没有生成新物质的变化。如石蜡的熔化、水的蒸发。
39、可燃物
40、氧气(或空气)
——八年级上册生物知识点总结 30句菁华
1、酵母菌:是一类单细胞真菌,广泛用于食品和发酵工业。如烤制面包或蒸镘头、酿酒等。
2、醋酸菌:用于酿醋。
3、大型真菌:如蘑菇、木耳、灵芝等可以直接食用或制药。
4、氨基酸、有机酸、酶制剂、菌肥和农药生产方面得到应用。
5、用于基因工程:涌过基因工程用微生物产胰岛素、乙肝疫苗、干扰素等。
6、鸟类适天飞行的特点如下:
7、生物圈:地球上所有的生物与其环境的总和就叫生物圈。生物圈是地球上最大的生态系统,也是最大的生命系统。
8、昆虫是种类最多的一类动物,超过100万种,也是会飞的无脊椎动物,因而是分布最广泛的动物。
9、昆虫身体分为头、胸、腹三部分,一般有3对足,2对翅。蜘蛛、蜈蚣、虾、蟹等都不是昆虫,但它们都是节肢动物。。节肢动物的特点是:身体由很多体节构成,体表有外骨骼,足和触角分节。
10、达尔文与自然选择学说著作《物种起源》,被誉为19世纪自然科学的三大发现之一
11、生物性状的变异是普遍存在的,变异不一定都是有利的。
12、有性生殖:由两性生殖细胞结合成*卵发育成新个体的生殖方式。如:用种子繁殖
13、自然界中无性生殖方式:植物营养生殖(用营养器官根、茎、叶繁殖),分裂生殖、孢子生殖和出芽生殖等。人工控制无性生殖方式:组织培养(教材P8)、克隆
14、蝉退是指蝉退去限制身体进一步生长的外骨骼。
15、昆虫是卵生、有性生殖、体内*。
16、哺乳动物:具胎生,哺乳,体表被毛,体腔内有膈,体温恒定等特征.如兔、大熊猫
17、兔:体表被毛,用肺呼吸,心脏四腔,体循环和肺循环两条途径,体温恒定,牙分门齿和臼齿,盲肠发达(在细菌作用下,有助于植物纤维质的消化),大脑发达, 四肢灵活
18、足够的食物、水分、隐蔽地是陆生动物生存的基本环境条件
19、空中飞行的动物有昆虫(唯一会飞的无脊椎动物)、蝙蝠、鸟类等
20、鸟适于飞行的特点: ①体呈流线型②体表被羽,前肢特化为翼③骨坚而轻,多气质骨,胸部有高耸的龙骨突④胸肌发达⑤食量大消化快⑥心脏四腔,心搏次数快,循环系统完善⑦有发达的气囊,既可减轻体重又与肺构成特有的双重呼吸。总之鸟类是体表被羽、前肢特化为翼、具有迅速飞翔能力、内有气囊、体温高而恒定的一类动物
21、两栖动物:幼体生活在水中,用鳃呼吸,经变态发育成为成体,营水陆两栖生活,用肺呼吸,同时用皮肤辅助呼吸
22、食物链和食物网中的各种生物之间存在着相互依赖、相互制约的关系。其中任一环节出了问题,都会影响整个生态系统。正是由于物质流、能量流和信息流的存在,使各种生物与环境成为一个统一的整体
23、生物防治就是利用生物来防治病虫害。如用瓢虫杀灭、控制棉蚜数量
24、生物反应器:利用生物做“生产车间”,生产人类所需的某些物质,这个生物或生物的某个器官即生物反应器。目前最理想的生物反应器是“乳房生物反应器”。 它可节省费用,简化程序和减少污染
25、鱼适应水中生活最重要的两个特点:
26、体表被覆羽毛——保温和飞行
27、胸肌、龙骨突发达——适于完成飞行动作
28、体温高而恒定——释放大量能量适于飞行
29、食量大,消化吸收能力强
30、动物在自然界中作用: