五年级上册数学知识点 50句菁华

首页 / 句子 / | 2022-12-02 00:00:00 数学

1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

3、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

4、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

6、把因数的位置交换相乘

7、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。

8、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。

9、用字母表示计算公式。

10、综合计算法

11、*行四边形面积=底×高 S = a h

12、*行四边形底=面积÷高 a = S ÷ h

13、梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )

14、1*方米=100*方分米=10000*方厘米

15、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

16、求近似数的方法一般有三种:(P10)

17、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、长方形的周长=(长+宽)×2:C=(a+b)×2。

20、长方形的面积=长×宽:S=ab。

21、三角形的面积=底×高÷2 S=ah÷2

22、长方体的体积=长×宽×高公式:V = abh

23、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。

24、5×1.8 就是求 1.5 的 1.8 倍是多少。

25、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

26、方程的检验过程:方程左边=……

27、等底等高的*行四边形面积相等;

28、邮政编码:由6位组成,前2位表示省(直辖市、自治区)

29、正方形的特点:有4个直角,4条边相等。

30、*行四边形的特点:

31、可以表示起点

32、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数

33、读数和写数(读数时写汉字写数时写*数字)

34、公式

35、真分数:分子小于分母的分数叫做真分数。真分数小于1。

36、互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

37、自然数按是否是2的倍数来分:奇数偶数

38、自然数按因数的个数来分:质数、合数、1.

39、表示相等关系的式子叫做等式。

40、含有未知数的等式是方程。

41、列方程解应用题的思路:

42、1992所有的质因数的和是( 88 )。

43、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。

44、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。

45、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。

46、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

47、长方形里最大的圆。两者联系:宽=直径

48、车轮滚动一周前进的路程就是车轮的周长。

49、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

50、常用的*方数:112=121 122=144 132=169 142=196 152=225


五年级上册数学知识点 50句菁华扩展阅读


五年级上册数学知识点 50句菁华(扩展1)

——五年级上册数学知识点 60句菁华

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、构建初步的空间想象力;

7、多边形面积的计算。

8、计算小数加法先把小数点对齐,再把相同数位上的数相加

9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

10、用计算器来验算

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、构建空间想象力:

13、①含有未知数的等式称为方程。

14、*行四边形面积=底×高字母公式:s=ah

15、分割法;

16、画垂线时用实线画。

17、*行四边形面积=底×高(s*=ah)

18、三角形高=面积×2÷底 h = 2 S ÷ a

19、运算定律和性质:

20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

21、(关于“大约)应用题:

22、圆柱的侧面积=底面圆的周长×高:S=ch。

23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。

24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

25、相邻两个质量单位进率是1000。

26、圆的面积=圆周率×半径×半径:s=πr2。

27、*行四边形的面积=底×高S=ah

28、正方体的表面积=棱长×棱长×6公式:S=6a2

29、镜子内外的左右方向是相反的。

30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】

31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。

32、5×1.8 就是求 1.5 的 1.8 倍是多少。

33、所有的方程都是等式,但等式不一定都是方程。

34、方程的检验过程:方程左边=……

35、身份证码:18位

36、长方形和正方形是特殊的*行四边形。

37、解方程。

38、求一个数的近似数:

39、分母:表示*均分的份数。分子:表示取出的份数。

40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。

41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。

42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

43、含有未知数的等式是方程。

44、求方程中未知数的过程,叫做解方程。

45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能

46、1992所有的质因数的和是( 88 )。

47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。

49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。

50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

55、有些事件的发生是确定的,有些是不确定的。 可能

56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)

57、正方形里最大的圆。两者联系:边长=直径

58、长方形里最大的圆。两者联系:宽=直径

59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


五年级上册数学知识点 50句菁华(扩展2)

——八年级上册数学知识点 50句菁华

1、直角三角形全等的判定

2、角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、定理1关于某条直线对称的两个图形是全等形

5、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

6、多边形内角和定理n边形的内角的和等于(n—2)×180°

7、*行四边形性质定理2*行四边形的对边相等

8、*行四边形判定定理2两组对边分别相等的四边形是*行四边形

9、*行四边形判定定理4一组对边*行相等的四边形是*行四边形

10、矩形性质定理1矩形的四个角都是直角

11、菱形性质定理1菱形的四条边都相等

12、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

13、线段垂直*分线上的点与这条线段的两个端点的距离相等

14、等腰三角形的性质

15、运用公式法

16、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。

17、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

18、比较法

19、公式法

20、定理1 在角的*分线上的点到这个角的两边的距离相等

21、推论 2 有一个角等于60°的等腰三角形是等边三角形

22、由坐标找点:例找点B( 3,-2 ) ?

23、关于坐标轴、原点的对称点:

24、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。

26、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

27、因式分解

28、轴对称图形上对应线段相等、对应角相等。

29、点(x,y)关于x轴对称的点的坐标为(x,—y)

30、等边三角形的三个内角相等,等于60°,

31、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

32、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

33、同底数幂的除法

34、因式分解的思路与解题步骤:

35、分组分解法:

36、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。

37、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

38、类比分数的通分得到分式的通分:

39、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

40、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

41、在*面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

42、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

43、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

44、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

45、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

46、刻画数据的集中趋势(*均水*)的量:*均数、众数、中位数

47、个体:组成总体的每一个考察对象称为个体、

48、对角线相等的*行四边形是矩形。

49、对角线互相垂直的*行四边形是菱形。

50、邻边相等的矩形是正方形。


五年级上册数学知识点 50句菁华(扩展3)

——六年级上册数学知识点 50句菁华

1、整数加法计算法则:

2、小数乘法法则:

3、小数乘法意义:

4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

5、已知A比B多(或少)几分之几,求A的解题方法

6、物*置的相对性

7、理解比例的意义和基本性质,会解比例。

8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

9、在*面图上标出物*置的方法:

10、绘制路线图的方法:

11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

17、求一个数比另一个数多(或少)几分之几(或百分之几)?

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、根据比的基本性质,可以把比化成最简单的整数比。

20、被减数-减数=差被减数-差=减数差+减数=被减数

21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

24、假分数与带分数的互化:

25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

27、已知一个数的百分之几是多少,求这个数?

28、浓度问题

29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

34、被除数 相当于分子,除数相当于分母。

35、减法的性质:

36、分数除法应用题:

37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

39、根据比的基本性质,可以把比化成最简单的整数比。

40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

42、常用统计图的优点:

43、使学生能在方格纸上用数对确定位置;

44、使学生理解倒数的意义,掌握求倒数的方法;

45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

50、“数与形相结合”的思想


五年级上册数学知识点 50句菁华(扩展4)

——中考数学知识点 60句菁华

1、直角坐标系中,点A(1,1)在第一象限。

2、函数=4x+1是正比例函数。

3、cs30°=。

4、同圆或等圆的半径相等。

5、长度相等的两条弧是等弧。

6、经过圆心*分弦的直径垂直于弦。

7、直线与圆有唯一公共点时,叫做直线与圆相切。

8、数的分类及概念数系表:

9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

10、整式和分式

11、指数

12、分式的加、减、乘、除、乘方、开方法则

13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

14、总体:考察对象的全体。

15、个体:总体中每一个考察对象。

16、众数:一组数据中,出现次数最多的数据。

17、角(*角、周角、直角、锐角、钝角)

18、互为余角、互为补角及表示方法

19、公理、定理

20、定义(包括内、外角)

21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

22、一般性质(角)

23、定义及一般形式:

24、根的判别式:

25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

27、一元一次不等式组:

28、应用举例(略)

29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

30、表示方法:⑴解析法;⑵列表法;⑶图象法。

31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

32、特殊角的三角函数值:

33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

34、"等对等"定理及其推论

35、五种位置关系及判定与性质:(重点:相切)

36、圆的内接、外切多边形(三角形、四边形)

37、*分已知弧

38、科学的听课方式

39、求与y轴*行线段的中点:|y1—y2|/2

40、抛物线是轴对称图形。对称轴为直线

41、一次项系数b和二次项系数a共同决定对称轴的位置。

42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。

43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

46、5×1.8 就是求 1.5 的 1.8 倍是多少。

47、求近似数的方法一般有三种:(P10)

48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

49、解方程原理:天**衡。

50、所有的方程都是等式,但等式不一定都是方程。

51、*行四边形面积公式推导:剪拼、*移

52、梯形面积公式推导:旋转

53、身份证码: 18 位

54、重心和三角形3个顶点组成的3个三角形面积相等。

55、直角坐标系中,点A(3,0)在y轴上。

56、当x=2时,函数y=的值为1.

57、当x=3时,函数y=的值为1.

58、函数y=-8x是一次函数。

59、tan45= 1.

60、直角三角形的三条高交点在一个顶点上。


五年级上册数学知识点 50句菁华(扩展5)

——八年级上册物理知识点 60句菁华

1、声音的传播需要介质,真空不能传声。在空气中,声音以看不见的声波来传播,声波到达人耳,引起鼓膜振动,人就听到声音。

2、声音在介质中的传播速度简称声速。一般情况下,v固>v液>v气声音在15℃空气中的传播速度是340m/s合1224km/h,在真空中的传播速度为0m/s。环境保护的角度噪声是指妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音起干扰作用的声音。

3、物理学史研究光、热、力、声、电等形形色色物理现象的规律和物质结构的一门科学。

4、长度测量的工具是刻度尺,长度的国际基本单位是米,符号是m;常用单位还有千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、纳米(nm)等。它们之间的换算关系是。

5、长度测量结果的记录包括准确值、估计值和单位。

6、产生:声音是由物体的振动产生的,振动停止,声音就停止;振动发声的物体叫声源。

7、乐音与噪声:

8、发声体可以是固体、液体和气体。

9、回声的利用:测量距离(车到山,海深,冰川到船的距离)。

10、在声音传给大脑的过程中任何部位发生障碍,人都会失去听觉(鼓膜、听小骨处出现障碍是传导性耳聋;听觉神经处出障碍是神经性耳聋)。

11、人耳感受到声音的频率有一个范围:20Hz~20000Hz,高于20000Hz叫超声波;低于20Hz叫次声波。

12、噪声:

13、运动的分类

14、物理学角度看,噪声是指发声体做无规则的杂乱无章的振动发出的声音;环境保护的角度噪声是指妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音起干扰作用的声音。

15、升华和凝华:

16、应用及现象:

17、分类:

18、成像原理: 从物体发出的光线经过晶状体等一个综合的凸透镜在视网膜上行成倒立,缩小的实像,分布在视网膜上的视神经细胞受到光的刺激,把这个信号传输给大脑,人就可以看到这个物体了。

19、显微镜: 显微镜镜筒的两端各有一组透镜,每组透镜的作用都相当于一个凸透镜,靠近眼睛的凸透镜叫做目镜,靠近被观察物体的凸透镜叫做物镜。来自被观察物体的光经过物镜后成一个放大的实像,道理就像投影仪的镜头成像一样;目镜的作用则像一个普通的放大镜,把这个像再放大一次。经过这两次放大作用,我们就可以看到肉眼看不见的小物体了。

20、单位:国际单位制:主单位kg ,常用单位:t g mg 对质量的感性认识:一枚大头针约80mg 一个苹果约 150g

21、测液体密度:

22、密度的应用:

23、比较记忆法:如惯性与惯性定律、像与影、蒸发与沸腾、压力与压强、串联与并联等,比较区别与联系,找出异同。

24、*行光经凸透镜折射后会聚焦点,反过来从焦点发过焦点的光折射后*行*行光经凹透镜折射后折射光的反向延长线过虚焦点,则入射光的延长线过虚焦点的,折射后一定是*行主光轴的光线。

25、速度:路程与时间之比叫做速度,速度是表示物体运动快慢的物理量。

26、频率:

27、响度:

28、声音传递信息的实例:

29、噪声的控制:

30、温度计制作原理:

31、摄氏温度的规定:

32、温度计使用方法:

33、熔化:

34、汽化的两种方式:

35、液化现象:

36、升华:

37、吸热与放热:

38、光源:

39、法线:

40、光路可逆性:

41、物体的颜色:

42、红外线的应用:

43、凹透镜对光线的作用:

44、投影仪成像特点:倒立放大的实像。

45、凸透镜成像规律:

46、近视眼矫正:佩戴凹透镜。

47、质量的单位:千克(kg),常用单位:吨(t)、克(g)、毫克(mg)。1t=1000kg 1kg=1000g 1g=1000mg

48、天*是实验室测质量的常用工具。当天**衡后,被测物体的质量等于砝码的质量加上游码所对的刻度值。

49、物质的质量与体积的关系:体积相同的不同物质组成的物体的质量一般不同,同种物质组成的物体的质量与它的体积成正比。

50、量筒的使用:液体物质的体积可以用量筒测出。量筒(量杯)的使用方法:

51、光遇到水面,玻璃以及其他许多物体的表面都会发生反射。光的反射遵守反射规律。

52、三条特殊光线:

53、眼睛好象一架照相机,晶状体相当于凸透镜,视网膜相当于光屏。明视距离为25cm。远视眼能看清远处的物体而看不清近处的物体,晶状体太薄,成像在视网膜之后;近视眼能看清近处而看不清远处的物体,晶状体太厚,成像在视网膜只前。

54、近视眼应该带凹透镜,远视眼应该带凸透镜。眼镜的度数=100×焦度焦度=1/f

55、物质从一种状态到另一种状态叫做物态变化。物质从固态变成液态叫熔化,从液态变成固态叫凝固。熔化吸热,凝固放热。固体分为晶体和非晶体。

56、物质从液态变成气态叫做汽化,从气态变成液态叫做液化。汽化吸热,液化放热。汽化分为蒸发和沸腾。蒸发现象:在任何温度下,发生在液体表面,缓慢的汽化现象。影响蒸发的因素:

57、通过摩擦使物体带电叫做摩擦起电,带电物体能吸引轻小物体。自然界中只有正负两种电荷。丝绸摩擦过的玻璃棒带正电荷,毛皮摩擦过的橡胶棒带负电荷,同种电荷相互排斥,异种电荷相互吸引。

58、电荷的多少叫做电荷量。单位:库仑(c)元电荷是最小的电荷e=1.6×10—19原子有带正电的原子核和带负电的电子组成。通常情况下原子核带的正电荷和核外电子总共带的负电荷数量相等,不显电性,但是得到电子就显负电,失去电子就显正电。

59、电荷(正电荷或者负电荷)的定向移动形成电流。正电荷定向移动方向规定为电流方向。电源是提供电能的装置,用电器是消耗电能的装置,开关控制电路的通和断,导线连接电路作用。

60、生活中与光的折射有关的例子:水中的鱼的位置看起来比实际位置高一些(鱼实际在看到位置的后下方);由于光的折射,池水看起来比实际的浅一些;水中的人看岸上的景物的位置比实际位置高些;夏天看到天上的星斗的位置比星斗实际位置高些;透过厚玻璃看钢笔,笔杆好像错位了;斜放在水中的筷子好像向上弯折了;(要求会作光路图)


五年级上册数学知识点 50句菁华(扩展6)

——七年级下册数学知识点 40句菁华

1、都是数字与字母的乘积的代数式叫做单项式。

2、单独一个数或一个字母也是单项式。

3、只含有字母因式的单项式的系数是1或―1。

4、单项式的系数包括它前面的符号。

5、单项式的系数是1或―1时,通常省略数字“1”。

6、多项式中的每一个单项式叫做多项式的项。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

8、单项式和多项式统称为整式。

9、单项式或多项式都是整式。

10、几个整式相加减的一般步骤:

11、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

12、底数相同的幂叫做同底数幂。

13、此法则也可以逆用,即:am+n = am﹒an。

14、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

15、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。

16、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

17、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

18、系数相乘时,注意符号。

19、单项式乘以单项式的结果仍是单项式。

20、积是一个多项式,其项数与多项式的项数相同。

21、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

22、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的*方之差。

23、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

24、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

25、互为余角和互为补角和

26、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

27、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

28、(1)等腰三角形:对称轴,性质

29、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线

30、事件的分类:,会求各种事件的概率

31、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

32、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。

33、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。

34、等腰三角形的两个底角相等(简称“等边对等角”)。

35、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

36、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

37、*行线的性质:

38、*面上不相重合的两条直线之间的位置关系为_______或________

39、实数与数轴上点的关系:

40、算术*方根


五年级上册数学知识点 50句菁华(扩展7)

——七年级下册数学知识点总结 40句菁华

1、按性质符号分类:

2、对于数轴上的任意两个点,靠右边的点所表示的数较大。

3、乘方与开方

4、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

5、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。

6、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。

7、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

10、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。

11、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

12、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

13、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

14、*移:

15、大于0的数叫做正数(positive number)。

16、在正数前面加上负号“-”的数叫做负数(negative number)。

17、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

18、正数大于0,0大于负数,正数大于负数。

19、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

20、有理数减法法则

21、有理数乘法法则

22、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

24、根据有理数的乘法法则可以得出

25、做有理数混合运算时,应注意以下运算顺序:

26、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

27、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

28、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

29、单项式中的数字因数叫做这个单项式的系数(coefficient)。

30、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。

31、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

32、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。

33、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。

34、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

35、等角的补角相等,等角的余角相等。

36、相反数的几何意义

37、单项式的系数:是指单项式中的数字因数;

38、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。

39、单项式和多项式统称为整式。

40、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。


五年级上册数学知识点 50句菁华(扩展8)

——三年级上册数学的知识点归纳 40句菁华

1、计算一段时间,可以用结束的时刻减去开始的时刻。

2、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。

3、常用长度单位:米、分米、厘米、毫米、千米。

4、质量单位 :吨、千克、克,每相邻两个单位之间的进率都是1000 。

5、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。

6、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。

7、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。

8、在一个长方形中剪出一个最大的正方形,长方形的宽就是这个正方形的边长。

9、A项 B项

10、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

11、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

12、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

13、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

14、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

15、在计算长度时,只有相同的长度单位才能相加减。

16、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

17、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

18、读数和写数(读数时写汉字写数时写*数字)

19、数的大小比较:

20、被减数是三位数的连续退位减法的运算步骤:

21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

22、正方形的特点:有4个直角,4条边相等。

23、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)

24、减法的验算方法:

25、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

26、分母越大,分数单位越小,的分数单位是1/2

27、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

28、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

29、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

30、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

31、分数大小比较的应用题:工作效率大的快,工作时间小的快。

32、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

33、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

34、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

35、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

36、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

37、笔算除法顺序:确定商的位数,试商,检查,验算。

38、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

39、*年:2月有28天的月份是*年,*年有365天。

40、闰年:2月有29天的月份是*年,*年有365天。


五年级上册数学知识点 50句菁华(扩展9)

——中考七年级数学知识点 30句菁华

1、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。

2、把多项式中的同类项合并成一项,叫做合并同类项。

3、具有相反意义的量

4、有理数的概念

5、在正数前面加上负号“-”的数叫做负数(negativenumber).

6、在直线上任取一个点表示数0,这个点叫做原点(origin).

7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

9、正数大于0,0大于负数,正数大于负数.

10、有理数减法法则

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

12、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

13、根据有理数的乘法法则可以得出

14、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.

15、射线的特征:“向一方无限延伸,它有一个端点。”

16、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。

17、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

18、垂直公理:过一点有且只有一条直线与已知直线垂直。

19、垂线段最短。

20、*行线的判定:

21、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

22、*行线的性质:

23、命题:判断一件事情的语句叫命题。

24、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。

25、实数的分类正有理数有理数零有限小数和无限循环小数

26、相反数

27、倒数

28、算术*方根

29、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。

30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。

相关词条