1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
2、封闭图形一周的长度,就是它的周长。
3、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。
5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
6、乘方的定义:
7、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
8、数据1,2,3,4,5的中位数是3.
9、整数和分数统称为有理数。
10、人们通常用一条直线上的点表示数,这条直线叫做数轴。
11、个位满10向十位进1。
12、弄清题意,找出未知数,并用X表示;
13、角
14、除法
15、什么是复名数?
16、什么样的数能被3整除?
17、圆的周长总是直径的三倍多一些。
18、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。
19、两直线*行,内错角相等
20、三角形内角和定理 三角形三个内角的和等于180°
21、边边边公理(SSS) 有三边对应相等的两个三角形全等
22、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线
23、逆定理 如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称
24、推论 任意多边的外角和等于360°
25、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
26、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,*行线,转比例,两端各自找联系。
27、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
28、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。
29、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
30、解题公式:追及时间=追及路程÷速度差
31、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
32、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
33、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
34、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
35、忽视零向量致误
36、错位相减求和项处理不当致误
37、数列中的最值错误
38、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
39、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
40、同类项及其合并
41、指数
42、3空间几何体的表面积与体积
43、直线与*面*行的判定定理:*面外一条直线与此*面内的一条直线*行,则该直线与此*面*行。
44、实数
45、三角形内角和定理:
46、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
47、等腰三角形的性质定理
48、矩形判定定理2
49、相交弦定理
50、列方程解应用题的常用公式:
——数学知识点 100句菁华
1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、长方形和正方形是特殊的*行四边形。
5、①相同分母的分数相加、减:分母不变,只和分子相加、减。
6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
7、有理数加法的运算律:
8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
10、有理数中仍然有:乘积是1的两个数互为倒数。
11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
12、圆方程
13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
14、从个位减起;
15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
16、哪一位上乘得的积满几十就向前进几。
17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
20、解方程;
21、除法各部分之间的关系:
22、乘法各部分的关系:
23、什么是名数?
24、什么是复名数?
25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
26、环形面积=大圆–小圆=πR2-πr2
27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。
30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。
31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。
34、学生在动手操作中,可以画出并能计算出图形的周长。
35、概念和分类
36、基本规律
37、鸡兔同笼的解题思路
38、两直线*行,内错角相等
39、定理 三角形两边的和大于第三边
40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合
41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
42、直角三角形斜边上的中线等于斜边上的一半
43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
44、*行四边形性质定理1 *行四边形的对角相等
45、*行四边形性质定理2 *行四边形的对边相等
46、推论 夹在两条*行线间的*行线段相等
47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形
48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比
52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
53、集合的中元素的三个特性:
54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
55、语言描述法:例:{不是直角三角形的三角形}
56、有余数的除法: 被除数=商×除数+余数
57、竖式:
58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。
59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。
61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.
62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
67、用字母表示数的写法
68、列方程解答应用题的步骤
69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41
70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,
71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
73、怎样找准分数应用题中单位“1”
74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)
75、奇数、偶数、质数、合数(正整数自然数)
76、忽视零向量致误
77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
78、单项式与多项式
79、指数
80、1柱、锥、台、球的结构特征
81、2空间几何体的三视图和直观图
82、2.直线、*面*行的判定及其性质
83、3直线、*面垂直的判定及其性质
84、3.1直线与*面垂直的判定
85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形
86、有理数和无理数统称实数.
87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.
88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
89、一个数与0相加,仍得这个数。
90、方程与方程组
91、一元二次方程的二次函数的关系
92、同角或等角的余角相等——余角=90-角度。
93、逆定理
94、矩形性质定理1
95、等腰梯形判定定理
96、判定定理3
97、性质定理3
98、圆的外部可以看作是圆心的距离大于半径的点的集合
99、切割线定理
100、扇形面积公式:S扇形=n兀R^2/360=LR/2
——中考数学知识点 50句菁华
1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
2、反比例函数的图象在第一、三象限
3、cs30°=。
4、同弧所对的圆周角等于圆心角的一半。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
8、单项式与多项式
9、指数
10、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤
11、乘法法则:⑴单×单;⑵单×多;⑶多×多。
12、乘法公式:(正、逆用)
13、线段的中点及表示
14、互为余角、互为补角及表示方法
15、分类:
16、元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法
17、定义:a>b、a
18、一元一次不等式的解、解一元一次不等式
19、对应线段…;2.对应周长…;3.对应面积…。
20、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
21、画函数图象:⑴列表;⑵描点;⑶连线。
22、特殊角的三角函数值:
23、依据:①边的关系:
24、俯、仰角:2.方位角、象限角:3.坡度:
25、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
26、圆的定义(两种)
27、圆面积公式
28、弧长公式
29、圆柱、圆锥的侧面展开图及相关计算
30、作三角形的外接圆、内切圆
31、作半径
32、科学的听课方式
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)
34、规律方法总结:
35、k,b与函数图像所在象限:
36、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。
37、用待定系数法求二次函数的解析式
38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
39、见直径往往作直径上的'圆周角
40、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
41、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
42、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
43、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
44、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
45、梯形面积公式推导:旋转
46、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
47、重心到三角形3个顶点距离的*方和最小。
48、直角坐标系中,点A(3,0)在y轴上。
49、反比例函数的图象在第一、三象限。
50、cos60+ sin30= 1.
——小学数学知识点 50句菁华
1、加减混合运算:
2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,如70比25多多少?19比46少多少?
3、多几的问题。未知数比谁多几,就用谁加上几。如:比29多17的数是多少?(29+17=46)
4、哪一位数不够减,从前位退1,在本位加10再减。
5、从个位起,用一位数依次乘多位数中的每一位数;
6、除数除到哪一位,就把商写在那一位上面;
7、然后把两次乘得的数加起来。
8、除到被除数的哪一位就在哪一位上面写商;
9、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
10、从高位起,一级一级往下读;
11、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
13、弄清题意,找出未知数,并用X表示;
14、分数加减法:
15、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
16、四边形的特点:有四条直的边,有四个角。
17、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。
18、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8
19、5个6相加写作乘法算式是( )或( )。
20、数字写在字母的前面,应省略乘。[5a]、[16xy]等。
21、若系数是带分数,要化成假分数。
22、比较两个图形面积的大小,要用统一的面积单位来测量。
23、边长1分米的正方形面积是1*方分米。
24、边长1米的正方形面积是1*方米。
25、边长100米的正方形面积是1公顷(10000*方米)。
26、测量土地的面积时,常常要用到更大的面积单位:公顷、*方千米。
27、长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长
28、汽车在笔直的公路上行驶,车身的运动是( )现象
29、教室门的打开和关闭,门的运动是( )现象。
30、下面( )的运动是*移。
31、可以分布计算,也可以列综合算式。
32、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)
33、练习十三 第4题 (重点)
34、有余数的除法的意义:在*均分一些物体时,有时会有剩余。
35、笔算除法的计算方法:
36、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
37、10个一千是一万。
38、估算
39、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。
40、利率
41、因数×因数=积积÷一个因数=另一个因数
42、长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。
43、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。
44、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39
45、数级分类:
46、数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。
47、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。
48、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
49、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。
50、描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。
——初中数学知识点总结 50句菁华
1、实数
2、整式与分式
3、一元二次方程根的情况
4、函数
5、全等三角形的对应边、对应角相等
6、勾股定理的逆定理
7、*行四边形判定定理1
8、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
9、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
10、点、线、面、体
11、圆的内部可以看作是圆心的距离小于半径的点的集合
12、线段的中点:
13、一元一次方程
14、解一元一次方程的一般步骤:
15、圆的外切四边形的两组对边的和相等
16、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
17、乘积的符号的确定
18、定义:有一组邻边相等的*行四边形叫做菱形
19、推论2经过切点且垂直于切线的直线必经过圆心
20、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
21、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
22、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
23、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)
24、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
25、人们通常用一条直线上的点表示数,这条直线叫做数轴。
26、两个负数,绝对值大的反而小。
27、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
28、有理数中仍然有:乘积是1的两个数互为倒数。
29、过两点有且只有一条直线。
30、同位角相等,两直线*行。
31、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
32、定理四边形的内角和等于360°。
33、四边形的外角和等于360°。
34、推论任意多边的外角和等于360°。
35、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
36、菱形面积=对角线乘积的一半,即S=(a×b)÷2。
37、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
38、定理1关于中心对称的两个图形是全等的
39、等腰梯形的两条对角线相等。
40、(2)合比性质:
41、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。
42、圆是定点的距离等于定长的点的集合。
43、①两圆外离d﹥R+r。
44、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。
46、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
47、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
48、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
49、*行公理推论:*行于同一直线的两条直线互相*行。如果b//a,c//a,那么b//c
50、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。
——数学的知识点总结 50句菁华
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、能正确数出数量是6-10的物体的个数。
3、会读写6—10的数字。
4、大于0的数是正数。
5、相遇问题:速度和×相遇时间=路程和
6、不同级:高低(先乘方和开方,再乘除,最后加减)
7、2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
8、对顶角相等。
9、有理数的减法运算
10、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
11、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的'角。
12、多边形内角和定理:n边形内角和等于(n-2)180°。
13、*面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
14、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
15、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。
16、一条弧所对的圆周角等于它所对的圆心角的一半。
17、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
18、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
19、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
20、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×
21、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放*,用一块*板水*地放在圆锥的顶点上面,竖直地量出*板和底面之间的距离。)
22、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
23、多项式:几个单项式的和叫多项式。
24、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
25、合并同类项步骤:
26、收集数据
27、描述数据
28、撰写调查报告
29、加减:
30、分数乘法的计算法则
31、整数的倒数
32、小数的倒数
33、性质:
34、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
35、直线与圆的位置关系:
36、有理数乘方的法则:
37、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
38、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
39、混合运算法则:先乘方,后乘除,最后加减。
40、任何数的绝对值是非负数。
41、倒数:乘积为1的两个数互为倒数,0没有倒数。
42、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得快的是(秒针),走得慢的是(时针)。
43、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
44、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
45、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
46、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
47、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
48、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
49、*行四边形的特点:
50、封闭图形一周的长度,就是它的周长。
——高等数学知识点总结 50句菁华
1、了解函数的奇偶性、单调性、周期性、和有界性。
2、理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
3、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
4、熟练运用微分中值定理证明简单命题。
5、了解函数图形的作图步骤。了解方程求近似解的两种方法:二分法、切线法。
6、会求有理函数、三角函数、有理式和简单无理函数的不定积分
7、掌握不定积分的换元积分法。
8、理解定积分的概念,掌握定积分的性质及定积分中值定理。
9、掌握反常积分的运算。
10、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
11、掌握一阶线性微分方程的解法,会解伯努利方程.
12、掌握向量的线性运算,掌握单位向量、方向角与方向余弦,掌握向量的坐标表达式掌握用坐标表达式进行向量运算方法。
13、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。
14、理解曲面方程的概念,了解二次曲面方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线*行于坐标轴的柱面方程。
15、了解空间曲线的概念,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标*面上的投影,并会求其方程。
16、列方程解应用题的常用公式:
17、代数式
18、一元二次方程的解法
19、韦达定理
20、一元二次方程根的情况
21、点,线,面
22、直线外一点与直线上各点连接的所有线段中,垂线段最短
23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
24、同旁内角互补,两直线*行
25、两直线*行,同位角相等
26、推论
27、三角形内角和定理:
28、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
29、定理1
30、等腰三角形的性质定理
31、逆定理
32、多边形内角和定理
33、矩形性质定理2
34、菱形判定定理2
35、等腰梯形的两条对角线相等
36、*行线等分线段定理
37、同圆或等圆的半径相等
38、到已知角的两边距离相等的点的轨迹,是这个角的*分线
39、弦切角定理
40、正n边形的面积Sn=pn*rn/2
41、扇形面积公式:S扇形=n兀R^2/360=LR/2
42、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
43、绝对值:
44、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
45、有理数乘法的运算律:
46、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
47、混合运算法则:先乘方,后乘除,最后加减。
48、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
49、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
50、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0
——高中数学知识点总结 50句菁华
1、函数的极限:
2、在的导数。
3、函数在点处的导数的几何意义:
4、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
5、充要条件。
6、互为反函数的函数图象间的关系;
7、对数;
8、等差数列前n项和公式;
9、角的概念的推广;
10、两角和与差的正弦、余弦、正切;
11、函数的奇偶性;
12、函数的图象;
13、斜三角形解法举例。
14、向量;
15、实数与向量的积;
16、*面向量的坐标表示;
17、线段的定比分点;
18、不等式;
19、抛物线及其标准方程;
20、直线和*面*行的判定与性质;
21、直线和*面垂直的判定与性质;
22、三垂线定理及其逆定理;
23、异面直线的公垂线;
24、*面的法向量;
25、直线和*面所成的角;
26、向量在*面内的射影;
27、二面角及其*面角;
28、两个*面垂直的判定和性质;
29、多面体;
30、棱柱;
31、排列数公式;
32、函数图像(或方程曲线的对称性)
33、把答案盖住看例题
34、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。
35、利用导数研究多项式函数单调性的一般步骤
36、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
37、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
38、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
39、一条弧所对的圆周角等于它所对的圆心角的一半。
40、等比数列{an}中,若m+n=p+q,则
41、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
42、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
43、“包含”关系—子集注意:A?B有两种可能
44、构成函数的三要素:定义域、对应关系和值域
45、棱锥S—h—高V=Sh/3。
46、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
47、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。
48、区间的概念:设a,bR,且a
49、等比数列的有关公式
50、等比数列{an}的常用性质
——七年级下册数学知识点总结归纳 40句菁华
1、相反数
2、*方根
3、乘法
4、单项式的数字因数叫做单项式的系数。
5、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
6、几个单项式的和叫做多项式。
7、多项式中不含字母的项叫做常数项。
8、整式不一定是单项式。
9、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
10、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
11、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
12、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
13、积是一个多项式,其项数与多项式的项数相同。
14、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
15、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
16、*行线的性质:两直线*行。(线的*行
17、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
18、会判轴对称图形,会根据画对称图形,(或在方格中画)
19、常见的轴对称图形有:
20、垂直三要素:垂直关系,垂直记号,垂足。
21、垂线段最短。
22、命题:判断一件事情的语句叫命题。
23、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
24、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
25、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
26、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)
27、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
28、钝角三角形有两条高在外部。
29、三个角对应相等的两个三角形不一定全等。
30、两边及一角对应相等的两个三角形不一定全等。
31、一条斜边和一直角边对应相等的两个三角形全等。
32、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
33、全等图形
34、两个能够重合的图形称为全等图形。
35、全等三角形
36、若Y随X的变化而变化,则X是自变量Y是因变量。
37、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间
38、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
39、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;
40、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
——二年级下册数学知识点 40句菁华
1、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
2、地图上的方向口诀:上北下南,左西右东;
3、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
4、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。
5、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
6、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)
7、正方形有四个直角,四条边都相等;
8、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;
9、读数和写数都从高位起。万以内数的读法:读数时,要从高位读起,万位上是几就读几万,千位上是几就读几千,百位上是几就读几百,十位上是几就读几十,个位上是几就读几,中间有一个“0”或者连续两个“0”就只读一个“零”,末尾不管有几个 0都不读。
10、万以内数的写法:写数时,也要从高位写起,几个千就在千位上写几,几个百就在百位上写几,几个十就在十位上写几,几个一就在个位上写几,哪一位上一个数字也没有就写“0”占位。
11、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。例:2647=( )+( )+( )+( )
12、近似数:与准确数很接近的整十、整百、整千的数。
13、除法算式的读法:通常按照从前往后顺序读,读作除以,=读作等于,其他读法不变。
14、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
15、表内除法的知识点:
16、被除数
17、完全商
18、旋转:在*面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
19、三角形的内角和定理,及三角形外角定理。
20、两边之和大于第三边,两边之差小于第三边。
21、大角对大边。
22、认识角
23、认识直角、锐角、钝角
24、认识钟面:(1)钟面上最短最粗的针是时针,较短较粗的是分针,最细最长的是秒针。
25、认识几时几分方法:时针指在两个数之间,算小数,时针指在12和1之间,算12时,分针指着几,表示几个5分钟。
26、认识大约几时方法:时针接近几就是几时。此时,分针一般指在数字12左右。
27、比较时间:单位不同时要化成相同的时间单位再进行比较。在进行比赛(或做事)时:同样的距离(或同样的事情)所用的时间越多说明速度越慢(或效率越低);所用的时间越少说明速度越快(或效率越高)。
28、学生情况分析:
29、情感与态度目标
30、3/1分子分母同时乘以2,得到6/2,这就是整数3的一个分数形式。
31、3/1分子分母同时乘以4,得到12/4,这也是整数3的一个分数形式。
32、数轴的前点(原点)
33、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)
34、正方形的周长=边长×4:C=4a。
35、正方形的面积=边长×边长:S=a.a=a。
36、*行四边形的面积=底×高:S=ah。
37、正方体的表面积=棱长×棱长×6:S=6a×a。
38、205. 207. ( ). ( ). ( )
39、整千整百数的加减法:
40、因为13?+23?=1所以13和23互为倒数。()
——数学分析知识点的总结 40句菁华
1、代数式
2、整式与分式
3、韦达定理
4、一元二次方程根的情况
5、角边角公理(
6、四边形的外角和等于360°
7、如果两条直线都和第三条直线*行,这两条直线也互相*行
8、同旁内角互补,两直线*行
9、三角形内角和定理:
10、*行四边形性质定理1
11、*行四边形性质定理3
12、矩形性质定理2
13、矩形判定定理1
14、菱形性质定理1
15、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角
16、等腰梯形判定定理
17、对角线相等的梯形是等腰梯形
18、判定定理2
19、性质定理3
20、弦切角定理
21、①两圆外离
22、弧长计算公式:L=n兀R/180——》L=nR
23、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。
24、必修课程由5个模块组成:
25、*面向量:初等运算、坐标运算、数量积及其应用
26、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
27、导数:导数的概念、求导、导数的应用
28、复数:复数的概念与运算
29、绝对值:
30、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。
31、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
32、有理数乘法的运算律:
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
34、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
35、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
36、三角函数的单调性判断致误
37、忽视零向量致误
38、数列中的最值错误
39、面积体积计算转化不灵活致误
40、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。