六年级上册数学知识点 60句菁华

首页 / 句子 / | 2022-12-02 00:00:00 数学

1、同分母分数加减法计算方法:

2、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

3、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

4、分数乘整数的计算方法

5、分数乘分数的的计算方法

6、倒数的意义

7、已知单位“1”用乘法,求单位“1”用除法;

8、正比例和反比例:

9、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。

10、圆的周长是它的直径的π倍。(__)

11、圆内最长的线段是直径。(__)

12、3.14(__)π

13、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50

14、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

15、已知圆的周长,求圆的面积S=π(C÷π÷2)?

16、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积

17、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

18、应纳税额。计算方法:营业额×税率

19、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率

20、两种数量比较

21、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

22、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数

23、相遇问题速度和=路程÷相遇时间

24、速度×时间=路程路程÷速度=时间路程÷时间=速度

25、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

26、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

27、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

28、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

29、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

30、小数与百分数互化的规则:

31、百分数与分数互化的规则:

32、常用的分数、小数及百分数的互化

33、求一个数的百分之几是多少

34、已知一个数的百分之几是多少,求这个数?

35、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。

36、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)

37、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

38、当符合什么条件时,错误才能变成正确?

39、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

40、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

41、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

42、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

43、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

44、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

45、比和除法、分数的联系:

46、根据比与除法、分数的关系,可以理解比的后项不能为0。

47、化简比:

48、用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

49、数不仅可以用来表示数量和顺序,还可以用来编码。

50、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

51、常用统计图的优点:

52、确定物*置的方法:

53、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

54、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

55、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

56、倒数:乘积是1的两个数叫做互为倒数。

57、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

58、日常应用:

59、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

60、“方程”思想


六年级上册数学知识点 60句菁华扩展阅读


六年级上册数学知识点 60句菁华(扩展1)

——六年级上册数学知识点 50句菁华

1、整数加法计算法则:

2、小数乘法法则:

3、小数乘法意义:

4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

5、已知A比B多(或少)几分之几,求A的解题方法

6、物*置的相对性

7、理解比例的意义和基本性质,会解比例。

8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

9、在*面图上标出物*置的方法:

10、绘制路线图的方法:

11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

17、求一个数比另一个数多(或少)几分之几(或百分之几)?

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、根据比的基本性质,可以把比化成最简单的整数比。

20、被减数-减数=差被减数-差=减数差+减数=被减数

21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

24、假分数与带分数的互化:

25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

27、已知一个数的百分之几是多少,求这个数?

28、浓度问题

29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

34、被除数 相当于分子,除数相当于分母。

35、减法的性质:

36、分数除法应用题:

37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

39、根据比的基本性质,可以把比化成最简单的整数比。

40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

42、常用统计图的优点:

43、使学生能在方格纸上用数对确定位置;

44、使学生理解倒数的意义,掌握求倒数的方法;

45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

50、“数与形相结合”的思想


六年级上册数学知识点 60句菁华(扩展2)

——六年级上册数学知识点总结 40句菁华

1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

4、圆周率实验:

5、区分周长的一半和半圆的周长:

6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

7、取近似数的方法:

8、无限小数:小数部分的位数是无限的小数,叫做无限小数。

9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

22、分数的分类

23、分子分母是互质数的分数叫做最简分数。

24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

25、圆的面积=圆周率×半径×半径

26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

29、分数除法:分数除法是分数乘法的逆运算。

30、你还能得到哪些信息?

31、文化教育支出了多少元?购买衣物支出了多少元?

32、因为零不能作除数,所以分数的分母不能为零。

33、被除数 相当于分子,除数相当于分母。

34、整数加法计算法则:

35、同分母分数加减法计算方法:

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、用字母表示数的意义和作用

38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

39、、长方体

40、圆锥体


六年级上册数学知识点 60句菁华(扩展3)

——六年级下册数学知识点归纳 40句菁华

1、常见的圆柱圆锥解决问题:

2、正方形判定定理

3、圆锥解析几何定义:圆锥面和一个截它的*面(满足交线为圆)组成的空间几何图形叫圆锥。

4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

5、整十整百数乘一位数

6、比较大小的方法:

7、多位数的写法

8、多位数的大小比较:

9、“万”“亿”作单位的数:

10、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

11、按比例分配:

12、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

13、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

14、判断这两个量的比值是否一定,比值一定就成正比例关系;

15、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)

16、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

17、以长方形的宽为底面周长,长为高。

18、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

19、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

20、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

21、圆锥的特征:

22、圆锥的相关计算公式:

23、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

24、写法:在所写数的前面加上“—” 练习: 零上 16 摄氏度 零下

25、摄氏度

26、(1)圆柱周围的面叫做侧面。

27、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个*行四边形。

28、温馨提示:圆柱的底面是圆形,面不是椭圆。

29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch

30、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

31、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

32、一个圆柱占空间的大小,叫做这个圆柱的体积。

33、圆锥是由一个底面和一个侧面两部分组成。

34、温馨提示:

35、百分数。

36、统计。

37、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

38、两条*行线之间的距离处处相等。

39、在1、3、5、7、……、1999、2001这个数列中,数字“5”一共出现了多少次?

40、统计表制作步骤:


六年级上册数学知识点 60句菁华(扩展4)

——八年级上册数学知识点 50句菁华

1、直角三角形全等的判定

2、角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、定理1关于某条直线对称的两个图形是全等形

5、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

6、多边形内角和定理n边形的内角的和等于(n—2)×180°

7、*行四边形性质定理2*行四边形的对边相等

8、*行四边形判定定理2两组对边分别相等的四边形是*行四边形

9、*行四边形判定定理4一组对边*行相等的四边形是*行四边形

10、矩形性质定理1矩形的四个角都是直角

11、菱形性质定理1菱形的四条边都相等

12、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

13、线段垂直*分线上的点与这条线段的两个端点的距离相等

14、等腰三角形的性质

15、运用公式法

16、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。

17、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

18、比较法

19、公式法

20、定理1 在角的*分线上的点到这个角的两边的距离相等

21、推论 2 有一个角等于60°的等腰三角形是等边三角形

22、由坐标找点:例找点B( 3,-2 ) ?

23、关于坐标轴、原点的对称点:

24、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。

26、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

27、因式分解

28、轴对称图形上对应线段相等、对应角相等。

29、点(x,y)关于x轴对称的点的坐标为(x,—y)

30、等边三角形的三个内角相等,等于60°,

31、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

32、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

33、同底数幂的除法

34、因式分解的思路与解题步骤:

35、分组分解法:

36、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。

37、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

38、类比分数的通分得到分式的通分:

39、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

40、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

41、在*面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

42、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

43、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

44、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

45、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

46、刻画数据的集中趋势(*均水*)的量:*均数、众数、中位数

47、个体:组成总体的每一个考察对象称为个体、

48、对角线相等的*行四边形是矩形。

49、对角线互相垂直的*行四边形是菱形。

50、邻边相等的矩形是正方形。


六年级上册数学知识点 60句菁华(扩展5)

——八年级上册物理知识点 50句菁华

1、减弱噪声的方法:在声源处减弱、在传播过程中减弱、在人耳处减弱。

2、误差:测量值和真实值之间的差别叫误差。误差产生的原因:①与测量的人有关;②与测量的工具有关。任何测量结果都有误差,误差只能尽量减小,不能绝对避免;但错误是可以避免的。

3、回声:声音在传播途径中遇到碍物被返射回去的现象,叫回声。如回声比原声到达人耳晚0。1s以上,人耳能把他们区分开,否则回声会与原声混在一起会加强原声。利用“双耳效应”可以听到立体声。

4、自身能够发光的物体叫光源,如太阳、萤火虫等,而月亮不是光源。

5、在声音传给大脑的过程中任何部位发生障碍,人都会失去听觉(鼓膜、听小骨处出现障碍是传导性耳聋;听觉神经处出障碍是神经性耳聋)。

6、音调:声音的高低叫音调,频率越高,音调越高(频率:物体在每秒内振动的次数,表示物体振动的快慢,单位是赫兹,振动物体越大音调越低;)。

7、运动的描述

8、速度(常考点)

9、骨传导:声音的传导不仅仅可以用耳朵,还可以经头骨、颌骨传到听觉神经,引起听觉。这种声音的传导方式叫做骨传导。一些失去听力的人可以用这种方法听到声音。

10、人们用分贝(dB)来划分声音等级;听觉下限0dB;为保护听力应控制噪声不超过90dB;为保证工作学习,应控制噪声不超过70dB;为保证休息和睡眠应控制噪声不超过50dB。

11、汽化和液化:

12、光线是由一小束光抽象而建立的理想物理模型,建立理想物理模型是研究物理的常用方法之一。

13、反射定律:三线同面,法线居中,两角相等,光路可逆.即:反射光线与入射光线、法线在同一*面上,反射光线和入射光线分居于法线的两侧,反射角等于入射角。光的反射过程中光路是可逆的。

14、近视及远视的矫正:近视眼要戴凹透镜,远视眼要戴凸透镜.

15、测量:

16、凸透镜:中间厚边缘薄的透镜是凸透镜。凹透镜:中间薄边缘厚的透镜是凹透镜。

17、凹透镜的作用:对光线发散。

18、照相机的结构:

19、投影器与幻灯机的区别:投影器用两块大塑料螺纹透镜作聚光镜,并用一块*面镜把像反射到屏幕上。

20、色光三原色:红、绿、蓝。颜料三原色:红、黄、蓝。

21、在通常情况下,原子核所带正电荷与核外电子总共所带负电荷在数量上相等,整个原子呈中性。

22、匀速直线运动:我们把物体沿着直线且速度不变的运动叫匀速直线运动。

23、比较物体运动快慢的方法:

24、测量原理:*均速度计算公式v=ts。

25、回声:

26、人耳听觉范围:

27、音色:

28、温度计制作原理:

29、凝固条件:

30、凝华现象:

31、吸热与放热:

32、光的直线传播:

33、光线:

34、判断日食:

35、反射的分类:

36、色散:

37、紫外线的应用:

38、凹透镜:

39、凹透镜对光线的作用:

40、光心:

41、投影仪成像特点:倒立放大的实像。

42、密度与温度:温度能改变物质的密度,一般物体都是在温度升高时体积膨胀(即:热胀冷缩,水在4℃以下是热缩冷胀),密度变小。

43、凸透镜有两个实焦点,焦点到光心距离叫做焦距。凹透镜有两个虚焦点。

44、照相机的镜头是个凸透镜,调焦环的作用是调节镜头到胶片的距离,拍近景时,镜头往前伸,

45、望远镜的目镜和物镜都是凸透镜,目镜相当于放大镜,物镜相当于照相机镜头。显微镜的目镜和物镜也是凸透镜,目镜相当于放大镜,物镜相当于投影仪镜头。

46、物质从液态变成气态叫做汽化,从气态变成液态叫做液化。汽化吸热,液化放热。汽化分为蒸发和沸腾。蒸发现象:在任何温度下,发生在液体表面,缓慢的汽化现象。影响蒸发的因素:

47、折射角随入射角的增大而增大

48、当光射到两介质的分界面时,反射、折射同时发生

49、生活中与光的折射有关的例子:水中的鱼的位置看起来比实际位置高一些(鱼实际在看到位置的后下方);由于光的折射,池水看起来比实际的浅一些;水中的人看岸上的景物的位置比实际位置高些;夏天看到天上的星斗的位置比星斗实际位置高些;透过厚玻璃看钢笔,笔杆好像错位了;斜放在水中的筷子好像向上弯折了;(要求会作光路图)

50、因果(条件记忆法):如判定使用左、右手定则的条件时,可根据由于在磁场中有电流,而产生力,就用左手定则;若是电力在磁场中运动,而产生电流,就用右手定则。


六年级上册数学知识点 60句菁华(扩展6)

——五年级数学知识点 30句菁华

1、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。

2、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

3、由曲线围成的图形(圆)不能够密铺。

4、无限小数:小数部分的位数是无限的小数,叫做无限小数。

5、*行四边形面积公式推导:剪拼、*移

6、梯形面积公式推导:旋转

7、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。

8、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

9、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。

10、积与因数的关系:

11、一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)几倍。

12、小数除以整数:

13、小数除以小数:

14、5的倍数特征:个位上是0、5的数都是5的倍数

15、在*行四边形里画一个最大的三角形,这个三角形的面积等于这个*行四边形面积的一半。

16、三角形和*行四边形面积相等,高相等,则三角形的底是*行四边形的2倍,*行四边形的底是三角形的一半。

17、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

18、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的`自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

19、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

20、5□中最大填()时这个数能被3整除,这个数的约数有()

21、已知a=2×2×3×5b=2×5×7,a和b公有的质因数有(),它们的最大公约数是()

22、一个非0自然数不是质数,就是合数。()

23、大于2的偶数都是合数。()

24、8÷[14-(9.85+1.07)](2.44-1.8)÷0.4×20

25、一段长方体钢材,长1.6米,横截面是边长4厘米的正方形。每立方厘米刚重7.8克,这块方钢重多少?

26、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深12厘米。把一块石头浸入水中后,水面升到16厘米,求石块的体积。

27、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

28、在实际应用中,小数除法所

29、3232的循环节是32.

30、事件发生的机会(或概率)有大小。

相关词条