数学立体几何知识点 40句菁华

首页 / 句子 / | 2022-12-03 00:00:00 数学

1、正方体 a-边长 S=6a2 ; V=a3

2、圆柱 r-底半径;h-高;C底面周长;S底底面积;S侧侧面积

3、球 r-半径 ;d-直径 V=4/3d2/6

4、过一点有且只有一条直线和已知直线垂直

5、两直线*行,内错角相等

6、两直线*行,同旁内角互补

7、推论三角形两边的差小于第三边

8、推论3三角形的一个外角大于任何一个和它不相邻的内角

9、角的*分线是到角的两边距离相等的所有点的集合

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

11、推论1三个角都相等的三角形是等边三角形

12、四边形的外角和等于360°

13、*行四边形判定定理1两组对角分别相等的四边形是*行四边形

14、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

15、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

16、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例

17、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

18、性质定理1相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

19、圆的外部可以看作是圆心的距离大于半径的点的集合

20、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

21、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

22、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

23、推论2圆的两条*行弦所夹的弧相等

24、圆是以圆心为对称中心的中心对称图形

25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

26、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

27、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

28、推论1经过圆心且垂直于切线的直线必经过切点

29、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

30、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

31、定理把圆分成n(n≥3):

32、正n边形的每个内角都等于(n-2)×180°/n

33、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

34、扇形面积公式:S扇形=n∏R/360=LR/2

35、(1)几何图形:我们把从实物中抽象出的各种图形称为几何图形。

36、直线,射线,线段

37、线段的性质

38、角

39、*行线

40、合理安排,保持清醒。


数学立体几何知识点 40句菁华扩展阅读


数学立体几何知识点 40句菁华(扩展1)

——数学知识点 100句菁华

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、长方形和正方形是特殊的*行四边形。

5、①相同分母的分数相加、减:分母不变,只和分子相加、减。

6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

7、有理数加法的运算律:

8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

10、有理数中仍然有:乘积是1的两个数互为倒数。

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

12、圆方程

13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

14、从个位减起;

15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

16、哪一位上乘得的积满几十就向前进几。

17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

20、解方程;

21、除法各部分之间的关系:

22、乘法各部分的关系:

23、什么是名数?

24、什么是复名数?

25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

26、环形面积=大圆–小圆=πR2-πr2

27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

34、学生在动手操作中,可以画出并能计算出图形的周长。

35、概念和分类

36、基本规律

37、鸡兔同笼的解题思路

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

42、直角三角形斜边上的中线等于斜边上的一半

43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

44、*行四边形性质定理1 *行四边形的对角相等

45、*行四边形性质定理2 *行四边形的对边相等

46、推论 夹在两条*行线间的*行线段相等

47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形

48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

53、集合的中元素的三个特性:

54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

55、语言描述法:例:{不是直角三角形的三角形}

56、有余数的除法: 被除数=商×除数+余数

57、竖式:

58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。

61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.

62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

67、用字母表示数的写法

68、列方程解答应用题的步骤

69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

73、怎样找准分数应用题中单位“1”

74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)

75、奇数、偶数、质数、合数(正整数自然数)

76、忽视零向量致误

77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

78、单项式与多项式

79、指数

80、1柱、锥、台、球的结构特征

81、2空间几何体的三视图和直观图

82、2.直线、*面*行的判定及其性质

83、3直线、*面垂直的判定及其性质

84、3.1直线与*面垂直的判定

85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形

86、有理数和无理数统称实数.

87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

89、一个数与0相加,仍得这个数。

90、方程与方程组

91、一元二次方程的二次函数的关系

92、同角或等角的余角相等——余角=90-角度。

93、逆定理

94、矩形性质定理1

95、等腰梯形判定定理

96、判定定理3

97、性质定理3

98、圆的外部可以看作是圆心的距离大于半径的点的集合

99、切割线定理

100、扇形面积公式:S扇形=n兀R^2/360=LR/2


数学立体几何知识点 40句菁华(扩展2)

——数学知识点总结 40句菁华

1、面积、体积最(大)问题

2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

3、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

4、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

5、1柱、锥、台、球的结构特征

6、2空间几何体的三视图和直观图

7、3空间几何体的表面积与体积

8、1.2空间中直线与直线之间的位置关系

9、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系

10、2.1直线与*面*行的判定

11、2.2*面与*面*行的判定

12、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。

13、二面角的记法:二面角α-l-β或α-AB-β

14、定理:垂直于同一个*面的两条直线*行。

15、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。

16、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直*分线

17、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

18、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

19、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

20、①直线L和⊙O相交d﹤r

21、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

22、如果两个圆相切,那么切点一定在连心线上

23、定理:把圆分成n(n≥3):

24、定理:

25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26、弧长计算公式:L=n兀R/180

27、扇形面积公式:

28、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。

29、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

30、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

31、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

32、集合的表示方法:常用的有列举法、描述法和图文法

33、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.

34、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

35、求出每段的解析式.

36、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

37、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

38、an与Sn关系不清致误

39、不等式恒成立问题致误

40、忽视基本不等式应用条件致误


数学立体几何知识点 40句菁华(扩展3)

——数学圆知识点总结 40句菁华

1、圆是定点的距离等于定长的点的集合

2、圆的内部可以看作是圆心的距离小于半径的点的集合

3、同圆或等圆的半径相等

4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

5、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

6、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

7、推论:经过切点且垂直于切线的直线必经过圆心

8、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

10、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

11、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

12、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

13、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

14、圆的有关性质

15、不在同一直线上的三点确定一个圆。

16、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

17、切线的性质定理圆的切线垂直于经过切点的半径

18、推论2经过切点且垂直于切线的直线必经过圆心

19、圆的外切四边形的两组对边的和相等外角等于内对角

20、正n边形的每个内角都等于n-2×180°/n

21、正三角形面积√3a/4 a表示边长

22、内公切线长= d-R-r外公切线长= d-R+r

23、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

24、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径

25、弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr

26、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。

27、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

28、圆的周长C=2d

29、圆锥侧面积S=rl

30、圆的标准方程

31、圆的一般方程

32、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

33、圆的周长C=2πr=πd

34、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

35、①直线L和⊙O相交 d

36、推论2 经过切点且垂直于切线的直线必经过圆心

37、圆的外切四边形的两组对边的和相等 外角等于内对角

38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

39、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

40、弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r


数学立体几何知识点 40句菁华(扩展4)

——小学数学五年级第二单元知识点 50句菁华

1、一个数的倍数的个数是无限的。

2、个位上是0、2、4、6、8的数是2的倍数。

3、个位上是0或5的数,是5的倍数。

4、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。(至少3个因数)

5、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13的倍数,是的就是合数,不是的就是质数。

6、列举法︰12的因数有:1,2,3,4,6,12

7、用集合表示︰

8、根据算式:63÷7=9

9、分解质因数:把一个合数分解成多个质数相乘的形式。树状图

10、互质数:公因数只有1的两个数,叫做互质数。

11、长方体最多有( )个相对面是正方形,最多有( )个面的完全相同。

12、一个长方体中,如果相交于一个顶点的三条棱的长度分别是6厘米,3厘米,3厘米,那么它( )个面是正方形,正方体的面积是( );有( )个面的面积相等,这些面的面积都是( )。

13、因为正方体是长、宽、高都( )的长方体,所以正方体是( )的长方体。

14、一个正方体的表面是54*方厘米,那么一个面的面积是( )*方厘米,棱长是( )厘米。

15、长方体的长、宽、高都扩大2倍,那么表面就扩大( )倍。

16、一节通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50节,需要多少*方米的铁皮?

17、一个长方体的游泳池,长20米,宽18米,水深2.5米。

18、一个房间的长6米,宽3.5米,高3米,门窗面积是8*方米。现在要把这个房间的四

19、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少*方厘米?

20、求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法

21、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

22、解方程原理:天**衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

23、10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

24、公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a *行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

25、梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个*行四边形; *行四边形的底相当于梯形的上下底之和; *行四边形的高相当于梯形的高;*行四边形面积等于梯形面积的2倍; 因为*行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

26、由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

27、表示相等关系的式子叫做等式。

28、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数

29、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。

30、分母越大,分数单位越小,最大的分数单位是2(1)。

31、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

32、求一个数是(占)另一个数的几分之几,用除法列算式计算。

33、单向*移求不同的和的个数规律:

34、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。

35、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

36、只有1个因数。“1”既不是质数,也不是合数。

37、分解质因数

38、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

39、长方体或正方体6个面和总面积叫做它的表面积。

40、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

41、商的变化规律:(十分重要)

42、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

43、运算定律

44、一个算式里,如果只含有同一级运算,要从左到右依次计算。

45、常用的土地面积单位:*方米、公顷。

46、解方x程要写解字,会检验过程。列方程解应用题要注意写解设。

47、把一个*行四边形拼成长方形,面积不变,宽变小了,周长也变小。

48、一个社区、校园的面积通常用“公顷”为单位;表示一个国家、省市、地区、湖泊的面积是就要用“*方千米”作单位。

49、小数的改写:

50、求小数的近似数:


数学立体几何知识点 40句菁华(扩展5)

——数学七年级知识点 50句菁华

1、三角形的分类

2、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、线段的性质(公理):所有连接两点的线中,线段最短。

4、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

5、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p

6、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

7、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

8、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

9、同级运算,从左到右进行。

10、*方根

11、算术*方根

12、单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

13、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

14、对顶角和邻补角的关系

15、垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

16、垂线性质

17、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

18、对应点:*移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

19、特殊解法:换元法。

20、垂直三要素:垂直关系,垂直记号,垂足。

21、有理数乘法法则

22、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

23、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

24、判断三条线段能否组成三角形。

25、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

26、三个角对应相等的两个三角形不一定全等。

27、两边及它们的夹角对应相等的两个三角形全等。

28、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

29、绝对值:

30、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.

31、全等三角形

32、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。

33、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

34、、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。

35、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;

36、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。

37、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

38、数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

39、常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量、

40、*行线的性质:两直线*行,_________相等,________相等,________互补.

41、*行线的判定:________相等,或______相等,或______互补,两直线*行.

42、0表示的意义

43、数轴上特殊的最大(小)数

44、数轴上点的移动规律

45、多重符号的化简

46、有理数的乘法法则

47、先乘方,再乘除,最后加减;

48、巩固基础知识

49、互为倒数:乘积为1的两个数互为倒数;

50、混合运算法则:先乘方,后乘除,最后加减。


数学立体几何知识点 40句菁华(扩展6)

——三年级上册数学知识点总结 40句菁华

1、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

2、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

3、比较大小的方法:

4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

6、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

7、三位数乘一位数:积有可能是三位数,也有可能是四位数。

8、(关于“大约)应用题:

9、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)

10、被减数是三位数的连续退位减法的运算步骤:

11、乘法交换律:a×b=b×a交换因数的位置积不变。

12、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

13、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。

14、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

15、封闭图形一周的长度,就是它的周长。

16、连减的简便计算:

17、加减混合的简便计算:

18、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)

19、减法的验算方法:

20、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

21、两个三位数相加的和:可能是三位数,也有可能是四位数。

22、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

23、加法公式:加数+加数=和

24、长度单位的关系式有:(每两个相邻的`长度单位之间的进率是10 )

25、单位换算:小到大除,大到小乘。

26、分数大小比较的应用题:工作效率大的快,工作时间小的快。

27、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

28、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

29、关于0的一些规定:

30、乘除法的估算:4舍5入法。

31、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。

32、认识整千数(记忆:10个一千是一万)

33、读数和写数(读数时写汉字写数时写*数字)

34、要认真审题,弄清题目要求后再做。

35、“公顷”(测量菜地面积、果园面积)和“*方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;

36、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。

37、用乘法和除法两步计算解决实际问题的方法:

38、小数加法、减法的简便计算:

39、常用的土地面积单位有(公顷)和(*方千米)。

40、在乘法里,乘数也叫做因数。


数学立体几何知识点 40句菁华(扩展7)

——六年级上册数学知识点总结 40句菁华

1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

4、圆周率实验:

5、区分周长的一半和半圆的周长:

6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

7、取近似数的方法:

8、无限小数:小数部分的位数是无限的小数,叫做无限小数。

9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

22、分数的分类

23、分子分母是互质数的分数叫做最简分数。

24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

25、圆的面积=圆周率×半径×半径

26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

29、分数除法:分数除法是分数乘法的逆运算。

30、你还能得到哪些信息?

31、文化教育支出了多少元?购买衣物支出了多少元?

32、因为零不能作除数,所以分数的分母不能为零。

33、被除数 相当于分子,除数相当于分母。

34、整数加法计算法则:

35、同分母分数加减法计算方法:

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、用字母表示数的意义和作用

38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

39、、长方体

40、圆锥体


数学立体几何知识点 40句菁华(扩展8)

——小学四年级上册数学知识点总结 40句菁华

1、表示物体个数:1,2,3,4,5,6,7,8,9,10,…….都是自然数。一个物体也没有,用0来表示,0也是自然数。所有的自然数都是整数。

2、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。

3、ON╱CE:开关及清除屏键,清除显示屏上的内容。

4、边长是1千米的正方形面积是1*方千米。

5、长方形面积=长×宽

6、直线、射线、线段

7、量角的步骤:

8、经过一点可以画无数条直线;经过两个点,只能画一条直线。

9、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°

10、三位数乘两位数的笔算方法:

11、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。

12、速度单位通常有:千米/时、米/分、米/秒等。

13、与两条*行线互相垂直的线段长度都相等。或者说:两条*行线之间的距离处处相等。经过直线上一点(或外一点)作垂线,可以画一条。

14、从*行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做*行四边形的高,垂足所在的边叫做*行四边形的底。

15、*行四边形的特点:容易变形。例如:伸缩门、升降机

16、三角形三个内角的和是180°,四边形四个内角的和是360°。

17、商的变化规律:

18、条形统计图的特点:能直观的看出各种数量的大小,便于比较。

19、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定

20、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

21、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

22、连加、连减

23、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。

24、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。

25、读数时,只是在每一级的末尾加上“万”或“亿”字;每级末尾的0都不读,其它数位有一个0或几个0,都只读一个“零”。

26、通常我们用“四舍五入”的方法省略尾数求一个数的近似数。

27、升:升是常用的容量单位。计量水、油、饮料等液体的多少,通常用升作单位,用L表示。

28、两、三位数除以整十数的估算:先用被除数的前两位除以除数,如果够除商就是两位数,如果不够,就看被除数的前三位,商是一位数。

29、两、三位数除以两位数,可以用四舍五入法,把除数看作整十数来试商。四舍之后,除数小了,初商可能偏大,要调小;五入之后,除数大了,初商可能偏小,要调大;每次余下的数都要比除数小。

30、用除法解决周期现象中的问题比较方便。

31、分析问题从问题想起,去寻找相关的已知条件,逐步解答问题。

32、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法,再算加、减法。

33、同级的运算,哪个在前就先算哪一个。

34、线段有两个端点,可测量;射线有一个端点,不可测量;直线没有端点,不可测量。

35、量角时要注意量角器的中心与顶点重合,0度刻度线与角的一条边重合。

36、角的计量单位是“度”,用符号“°”表示。把半圆*分成180等份,每一份所对的、角的大小是l度。记做1°

37、角的大小与角的两边画出的长短没关系。角的大小要看两条边*的'大小,*得越大,角越大。

38、两组对边分别*行的四边形叫做*行四边形;*行四边形有无数条高,*行四边形不是轴对称图形。

39、沏茶类问题策略:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。

40、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。


数学立体几何知识点 40句菁华(扩展9)

——数学分析知识点总结 40句菁华

1、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

2、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

3、角

4、内错角相等,两直线*行

5、两直线*行,内错角相等

6、推论

7、圆是定点的距离等于定长的点的集合

8、圆是以圆心为对称中心的中心对称图形

9、*面向量:初等运算、坐标运算、数量积及其应用

10、复数:复数的概念与运算

11、数列的通项公式

12、有理数:①整数→正整数,0,负整数;

13、同角或等角的补角相等

14、过一点有且只有一条直线和已知直线垂直

15、边边边公理(SSS):有三边对应相等的两个三角形全等

16、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

17、角的*分线是到角的两边距离相等的所有点的集合

18、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

19、*行四边形判定定理3

20、矩形判定定理2

21、菱形性质定理1

22、菱形性质定理2

23、菱形判定定理2

24、等腰梯形性质定理

25、等腰梯形的两条对角线相等

26、对角线相等的梯形是等腰梯形

27、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

28、*行于三角形的一边,并且和其他两边相交的直线,

29、相似三角形判定定理1

30、判定定理2

31、性质定理3

32、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

33、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

34、到已知角的两边距离相等的点的轨迹,是这个角的*分线

35、切线的判定定理

36、弦切角定理

37、①两圆外离

38、元素的确定性;

39、集合的表示方法:列举法与描述法。

40、有限集含有有限个元素的集合


数学立体几何知识点 40句菁华(扩展10)

——高三数学知识点总结 40句菁华

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

4、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

5、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

6、利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

7、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.

8、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

9、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

10、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

11、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

13、计算直线与*面所成的角关键是作面的垂线找射影,或向量法(直线上向量与*面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与*面上以斜足为顶点的角的两边所成角相等斜线在*面上射影为角的*分线.

14、球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

15、导数与极值、导数与最值:

16、直线方程:高考时不单独命题,易和圆锥曲线结合命题

17、圆方程

18、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

19、数列的函数特征

20、复合函数的有关问题

21、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

22、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

23、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

24、圆柱体:

25、拟柱体

26、圆柱

27、记准均值、方差、标准差公式;

28、求概率时,正难则反(根据p1+p2+……+pn=1);

29、注意计数时利用列举、树图等基本方法;

30、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

31、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°

32、已知三边,或两边及其夹角用余弦定理

33、圆锥体:

34、写出点M的集合;

35、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

36、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

37、圆锥曲线:

38、导数、导数的应用(高考必考)

39、圆锥曲线

40、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分

相关词条